1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
# ------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# ------------------------------------------------------------------------
# pylint: disable=C0103
import datetime
import logging
import platform
import shlex
import subprocess
import sys
from glob import glob, iglob
from os import environ, getcwd, path, popen, remove
from pathlib import Path
from shutil import copyfile
from packaging.tags import sys_tags
from setuptools import Extension, setup
from setuptools.command.build_ext import build_ext as _build_ext
from setuptools.command.install import install as InstallCommandBase
nightly_build = False
package_name = "onnxruntime"
wheel_name_suffix = None
logger = logging.getLogger()
def parse_arg_remove_boolean(argv, arg_name):
arg_value = False
if arg_name in sys.argv:
arg_value = True
argv.remove(arg_name)
return arg_value
def parse_arg_remove_string(argv, arg_name_equal):
arg_value = None
for arg in sys.argv[1:]:
if arg.startswith(arg_name_equal):
arg_value = arg[len(arg_name_equal) :]
sys.argv.remove(arg)
break
return arg_value
# Any combination of the following arguments can be applied
if parse_arg_remove_boolean(sys.argv, "--nightly_build"):
nightly_build = True
wheel_name_suffix = parse_arg_remove_string(sys.argv, "--wheel_name_suffix=")
cuda_version = None
is_cuda_version_12 = False
rocm_version = None
is_migraphx = False
is_rocm = False
is_openvino = False
is_qnn = False
# The following arguments are mutually exclusive
if wheel_name_suffix == "gpu":
# TODO: how to support multiple CUDA versions?
cuda_version = parse_arg_remove_string(sys.argv, "--cuda_version=")
if cuda_version:
is_cuda_version_12 = cuda_version.startswith("12.")
elif parse_arg_remove_boolean(sys.argv, "--use_rocm"):
is_rocm = True
rocm_version = parse_arg_remove_string(sys.argv, "--rocm_version=")
if parse_arg_remove_boolean(sys.argv, "--use_migraphx"):
is_migraphx = True
elif parse_arg_remove_boolean(sys.argv, "--use_migraphx"):
is_migraphx = True
elif parse_arg_remove_boolean(sys.argv, "--use_openvino"):
is_openvino = True
package_name = "onnxruntime-openvino"
elif parse_arg_remove_boolean(sys.argv, "--use_dnnl"):
package_name = "onnxruntime-dnnl"
elif parse_arg_remove_boolean(sys.argv, "--use_tvm"):
package_name = "onnxruntime-tvm"
elif parse_arg_remove_boolean(sys.argv, "--use_vitisai"):
package_name = "onnxruntime-vitisai"
elif parse_arg_remove_boolean(sys.argv, "--use_acl"):
package_name = "onnxruntime-acl"
elif parse_arg_remove_boolean(sys.argv, "--use_armnn"):
package_name = "onnxruntime-armnn"
elif parse_arg_remove_boolean(sys.argv, "--use_cann"):
package_name = "onnxruntime-cann"
elif parse_arg_remove_boolean(sys.argv, "--use_azure"):
# keep the same name since AzureEP will release with CpuEP by default.
pass
elif parse_arg_remove_boolean(sys.argv, "--use_qnn"):
is_qnn = True
package_name = "onnxruntime-qnn"
if is_rocm:
package_name = "onnxruntime-rocm" if not nightly_build else "ort-rocm-nightly"
elif is_migraphx:
package_name = "onnxruntime-migraphx" if not nightly_build else "ort-migraphx-nightly"
# PEP 513 defined manylinux1_x86_64 and manylinux1_i686
# PEP 571 defined manylinux2010_x86_64 and manylinux2010_i686
# PEP 599 defines the following platform tags:
# manylinux2014_x86_64
# manylinux2014_i686
# manylinux2014_aarch64
# manylinux2014_armv7l
# manylinux2014_ppc64
# manylinux2014_ppc64le
# manylinux2014_s390x
manylinux_tags = [
"manylinux1_x86_64",
"manylinux1_i686",
"manylinux2010_x86_64",
"manylinux2010_i686",
"manylinux2014_x86_64",
"manylinux2014_i686",
"manylinux2014_aarch64",
"manylinux2014_armv7l",
"manylinux2014_ppc64",
"manylinux2014_ppc64le",
"manylinux2014_s390x",
"manylinux_2_28_x86_64",
"manylinux_2_28_aarch64",
]
is_manylinux = environ.get("AUDITWHEEL_PLAT", None) in manylinux_tags
class build_ext(_build_ext): # noqa: N801
def build_extension(self, ext):
dest_file = self.get_ext_fullpath(ext.name)
logger.info("copying %s -> %s", ext.sources[0], dest_file)
copyfile(ext.sources[0], dest_file)
try:
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
class bdist_wheel(_bdist_wheel): # noqa: N801
"""Helper functions to create wheel package"""
if is_openvino and is_manylinux:
def get_tag(self):
_, _, plat = _bdist_wheel.get_tag(self)
if platform.system() == "Linux":
# Get the right platform tag by querying the linker version
glibc_major, glibc_minor = popen("ldd --version | head -1").read().split()[-1].split(".")
"""# See https://github.com/mayeut/pep600_compliance/blob/master/
pep600_compliance/tools/manylinux-policy.json"""
if glibc_major == "2" and glibc_minor == "17":
plat = "manylinux_2_17_x86_64.manylinux2014_x86_64"
else: # For manylinux2014 and above, no alias is required
plat = f"manylinux_{glibc_major}_{glibc_minor}_x86_64"
tags = next(sys_tags())
return (tags.interpreter, tags.abi, plat)
def finalize_options(self):
_bdist_wheel.finalize_options(self)
if not is_manylinux:
self.root_is_pure = False
def _rewrite_ld_preload(self, to_preload):
with open("onnxruntime/capi/_ld_preload.py", "a") as f:
if len(to_preload) > 0:
f.write("from ctypes import CDLL, RTLD_GLOBAL\n")
for library in to_preload:
f.write('_{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split(".")[0], library))
def _rewrite_ld_preload_cuda(self, to_preload):
with open("onnxruntime/capi/_ld_preload.py", "a") as f:
if len(to_preload) > 0:
f.write("from ctypes import CDLL, RTLD_GLOBAL\n")
f.write("try:\n")
for library in to_preload:
f.write(' _{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split(".")[0], library))
f.write("except OSError:\n")
f.write(" import os\n")
f.write(' os.environ["ORT_CUDA_UNAVAILABLE"] = "1"\n')
def _rewrite_ld_preload_tensorrt(self, to_preload):
with open("onnxruntime/capi/_ld_preload.py", "a", encoding="ascii") as f:
if len(to_preload) > 0:
f.write("from ctypes import CDLL, RTLD_GLOBAL\n")
f.write("try:\n")
for library in to_preload:
f.write(' _{} = CDLL("{}", mode=RTLD_GLOBAL)\n'.format(library.split(".")[0], library))
f.write("except OSError:\n")
f.write(" import os\n")
f.write(' os.environ["ORT_TENSORRT_UNAVAILABLE"] = "1"\n')
def run(self):
if is_manylinux:
source = "onnxruntime/capi/onnxruntime_pybind11_state.so"
dest = "onnxruntime/capi/onnxruntime_pybind11_state_manylinux1.so"
logger.info("copying %s -> %s", source, dest)
copyfile(source, dest)
to_preload = []
to_preload_cuda = []
to_preload_tensorrt = []
to_preload_cann = []
cuda_dependencies = [
"libcuda.so.1",
"libcublas.so.11",
"libcublas.so.12",
"libcublasLt.so.11",
"libcublasLt.so.12",
"libcudart.so.11.0",
"libcudart.so.12",
"libcudnn.so.8",
"libcudnn.so.9",
"libcufft.so.10",
"libcufft.so.11",
"libcurand.so.10",
"libnvJitLink.so.12",
"libnvrtc.so.11.2", # A symlink to libnvrtc.so.11.8.89
"libnvrtc.so.12",
"libnvrtc-builtins.so.11",
"libnvrtc-builtins.so.12",
]
rocm_dependencies = [
"libamd_comgr.so.2",
"libamdhip64.so.5",
"libamdhip64.so.6",
"libdrm.so.2",
"libdrm_amdgpu.so.1",
"libelf.so.1",
"libhipfft.so.0",
"libhiprtc.so.5",
"libhiprtc.so.6",
"libhsa-runtime64.so.1",
"libMIOpen.so.1",
"libnuma.so.1",
"librccl.so.1",
"libhipblas.so.2",
"librocblas.so.3",
"librocblas.so.4",
"librocfft.so.0",
"libroctx64.so.4",
"librocm_smi64.so.5",
"librocm_smi64.so.6",
"libroctracer64.so.4",
"libtinfo.so.6",
"libmigraphx_c.so.3",
"libmigraphx.so.2",
"libmigraphx_onnx.so.2",
"libmigraphx_tf.so.2",
]
tensorrt_dependencies = ["libnvinfer.so.10", "libnvinfer_plugin.so.10", "libnvonnxparser.so.10"]
cann_dependencies = ["libascendcl.so", "libacl_op_compiler.so", "libfmk_onnx_parser.so"]
dest = "onnxruntime/capi/libonnxruntime_providers_openvino.so"
if path.isfile(dest):
subprocess.run(
["patchelf", "--set-rpath", "$ORIGIN", dest, "--force-rpath"],
check=True,
stdout=subprocess.PIPE,
text=True,
)
self._rewrite_ld_preload(to_preload)
self._rewrite_ld_preload_cuda(to_preload_cuda)
self._rewrite_ld_preload_tensorrt(to_preload_tensorrt)
self._rewrite_ld_preload(to_preload_cann)
else:
pass
_bdist_wheel.run(self)
if is_manylinux and not disable_auditwheel_repair and not is_openvino and not is_qnn:
assert self.dist_dir is not None
file = glob(path.join(self.dist_dir, "*linux*.whl"))[0]
logger.info("repairing %s for manylinux1", file)
auditwheel_cmd = ["auditwheel", "-v", "repair", "-w", self.dist_dir, file]
for i in cuda_dependencies + rocm_dependencies + tensorrt_dependencies + cann_dependencies:
auditwheel_cmd += ["--exclude", i]
logger.info("Running %s", " ".join([shlex.quote(arg) for arg in auditwheel_cmd]))
try:
subprocess.run(auditwheel_cmd, check=True, stdout=subprocess.PIPE)
finally:
logger.info("removing %s", file)
remove(file)
except ImportError as error:
print("Error importing dependencies:")
print(error)
bdist_wheel = None
class InstallCommand(InstallCommandBase):
def finalize_options(self):
ret = InstallCommandBase.finalize_options(self)
self.install_lib = self.install_platlib
return ret
providers_cuda_or_rocm = "onnxruntime_providers_" + ("rocm" if is_rocm else "cuda")
providers_tensorrt_or_migraphx = "onnxruntime_providers_" + ("migraphx" if is_migraphx else "tensorrt")
providers_openvino = "onnxruntime_providers_openvino"
providers_cann = "onnxruntime_providers_cann"
providers_qnn = "onnxruntime_providers_qnn"
if platform.system() == "Linux":
providers_cuda_or_rocm = "lib" + providers_cuda_or_rocm + ".so"
providers_tensorrt_or_migraphx = "lib" + providers_tensorrt_or_migraphx + ".so"
providers_openvino = "lib" + providers_openvino + ".so"
providers_cann = "lib" + providers_cann + ".so"
providers_qnn = "lib" + providers_qnn + ".so"
elif platform.system() == "Windows":
providers_cuda_or_rocm = providers_cuda_or_rocm + ".dll"
providers_tensorrt_or_migraphx = providers_tensorrt_or_migraphx + ".dll"
providers_openvino = providers_openvino + ".dll"
providers_cann = providers_cann + ".dll"
providers_qnn = providers_qnn + ".dll"
# Additional binaries
dl_libs = []
libs = []
if platform.system() == "Linux" or platform.system() == "AIX":
libs = [
"onnxruntime_pybind11_state.so",
"libdnnl.so.2",
"libmklml_intel.so",
"libmklml_gnu.so",
"libiomp5.so",
"mimalloc.so",
"libonnxruntime.so*",
]
dl_libs = ["libonnxruntime_providers_shared.so"]
dl_libs.append(providers_cuda_or_rocm)
dl_libs.append(providers_tensorrt_or_migraphx)
dl_libs.append(providers_cann)
dl_libs.append(providers_qnn)
dl_libs.append("libonnxruntime.so*")
# DNNL, TensorRT, OpenVINO, and QNN EPs are built as shared libs
libs.extend(["libonnxruntime_providers_shared.so"])
libs.extend(["libonnxruntime_providers_dnnl.so"])
libs.extend(["libonnxruntime_providers_openvino.so"])
libs.extend(["libonnxruntime_providers_vitisai.so"])
libs.append(providers_cuda_or_rocm)
libs.append(providers_tensorrt_or_migraphx)
libs.append(providers_cann)
libs.append(providers_qnn)
# QNN
qnn_deps = [
"libQnnCpu.so",
"libQnnHtp.so",
"libQnnSaver.so",
"libQnnSystem.so",
"libHtpPrepare.so",
"onnxruntime_qnn_ctx_gen",
]
dl_libs.extend(qnn_deps)
if nightly_build:
libs.extend(["libonnxruntime_pywrapper.so"])
elif platform.system() == "Darwin":
libs = [
"onnxruntime_pybind11_state.so",
"libdnnl.2.dylib",
"mimalloc.so",
"libonnxruntime*.dylib",
] # TODO add libmklml and libiomp5 later.
# DNNL & TensorRT EPs are built as shared libs
libs.extend(["libonnxruntime_providers_shared.dylib"])
libs.extend(["libonnxruntime_providers_dnnl.dylib"])
libs.extend(["libonnxruntime_providers_tensorrt.dylib"])
libs.extend(["libonnxruntime_providers_cuda.dylib"])
libs.extend(["libonnxruntime_providers_vitisai.dylib"])
if nightly_build:
libs.extend(["libonnxruntime_pywrapper.dylib"])
else:
libs = [
"onnxruntime_pybind11_state.pyd",
"dnnl.dll",
"mklml.dll",
"libiomp5md.dll",
providers_cuda_or_rocm,
providers_tensorrt_or_migraphx,
providers_cann,
"onnxruntime.dll",
]
# DNNL, TensorRT, OpenVINO, and QNN EPs are built as shared libs
libs.extend(["onnxruntime_providers_shared.dll"])
libs.extend(["onnxruntime_providers_dnnl.dll"])
libs.extend(["onnxruntime_providers_tensorrt.dll"])
libs.extend(["onnxruntime_providers_openvino.dll"])
libs.extend(["onnxruntime_providers_cuda.dll"])
libs.extend(["onnxruntime_providers_vitisai.dll"])
libs.extend(["onnxruntime_providers_qnn.dll"])
# DirectML Libs
libs.extend(["DirectML.dll"])
# QNN V68/V73 dependencies
qnn_deps = [
"QnnCpu.dll",
"QnnHtp.dll",
"QnnSaver.dll",
"QnnSystem.dll",
"QnnHtpPrepare.dll",
"QnnHtpV73Stub.dll",
"libQnnHtpV73Skel.so",
"libqnnhtpv73.cat",
"QnnHtpV68Stub.dll",
"libQnnHtpV68Skel.so",
]
libs.extend(qnn_deps)
if nightly_build:
libs.extend(["onnxruntime_pywrapper.dll"])
if is_manylinux:
if is_openvino:
ov_libs = [
"libopenvino_intel_cpu_plugin.so",
"libopenvino_intel_gpu_plugin.so",
"libopenvino_auto_plugin.so",
"libopenvino_hetero_plugin.so",
"libtbb.so.2",
"libtbbmalloc.so.2",
"libopenvino.so",
"libopenvino_c.so",
"libopenvino_onnx_frontend.so",
]
for x in ov_libs:
y = "onnxruntime/capi/" + x
subprocess.run(
["patchelf", "--set-rpath", "$ORIGIN", y, "--force-rpath"],
check=True,
stdout=subprocess.PIPE,
text=True,
)
dl_libs.append(x)
dl_libs.append(providers_openvino)
dl_libs.append("plugins.xml")
dl_libs.append("usb-ma2x8x.mvcmd")
data = ["capi/libonnxruntime_pywrapper.so"] if nightly_build else []
data += [path.join("capi", x) for x in dl_libs if glob(path.join("onnxruntime", "capi", x))]
ext_modules = [
Extension(
"onnxruntime.capi.onnxruntime_pybind11_state",
["onnxruntime/capi/onnxruntime_pybind11_state_manylinux1.so"],
),
]
else:
data = [path.join("capi", x) for x in libs if glob(path.join("onnxruntime", "capi", x))]
ext_modules = []
# Additional examples
examples_names = ["mul_1.onnx", "logreg_iris.onnx", "sigmoid.onnx"]
examples = [path.join("datasets", x) for x in examples_names]
# Extra files such as EULA and ThirdPartyNotices (and Qualcomm License, only for QNN release packages)
extra = ["LICENSE", "ThirdPartyNotices.txt", "Privacy.md", "Qualcomm AI Hub Proprietary License.pdf"]
# Description
readme_file = "docs/python/ReadMeOV.rst" if is_openvino else "docs/python/README.rst"
README = path.join(getcwd(), readme_file)
if not path.exists(README):
this = path.dirname(__file__)
README = path.join(this, readme_file)
if not path.exists(README):
raise FileNotFoundError("Unable to find 'README.rst'")
with open(README, encoding="utf-8") as fdesc:
long_description = fdesc.read()
# Include files in onnxruntime/external if --enable_external_custom_op_schemas build.sh command
# line option is specified.
# If the options is not specified this following condition fails as onnxruntime/external folder is not created in the
# build flow under the build binary directory.
if path.isdir(path.join("onnxruntime", "external")):
# Gather all files under onnxruntime/external directory.
extra.extend(
[
str(Path(*Path(x).parts[1:]))
for x in list(iglob(path.join(path.join("onnxruntime", "external"), "**/*.*"), recursive=True))
]
)
packages = [
"onnxruntime",
"onnxruntime.backend",
"onnxruntime.capi",
"onnxruntime.datasets",
"onnxruntime.tools",
"onnxruntime.tools.mobile_helpers",
"onnxruntime.tools.ort_format_model",
"onnxruntime.tools.ort_format_model.ort_flatbuffers_py",
"onnxruntime.tools.ort_format_model.ort_flatbuffers_py.fbs",
"onnxruntime.tools.qdq_helpers",
"onnxruntime.quantization",
"onnxruntime.quantization.operators",
"onnxruntime.quantization.CalTableFlatBuffers",
"onnxruntime.quantization.fusions",
"onnxruntime.quantization.execution_providers.qnn",
"onnxruntime.transformers",
"onnxruntime.transformers.models.bart",
"onnxruntime.transformers.models.bert",
"onnxruntime.transformers.models.gpt2",
"onnxruntime.transformers.models.llama",
"onnxruntime.transformers.models.longformer",
"onnxruntime.transformers.models.phi2",
"onnxruntime.transformers.models.sam2",
"onnxruntime.transformers.models.stable_diffusion",
"onnxruntime.transformers.models.t5",
"onnxruntime.transformers.models.whisper",
]
package_data = {"onnxruntime.tools.mobile_helpers": ["*.md", "*.config"]}
data_files = []
requirements_file = "requirements.txt"
local_version = None
enable_training = parse_arg_remove_boolean(sys.argv, "--enable_training")
enable_training_apis = parse_arg_remove_boolean(sys.argv, "--enable_training_apis")
enable_rocm_profiling = parse_arg_remove_boolean(sys.argv, "--enable_rocm_profiling")
disable_auditwheel_repair = parse_arg_remove_boolean(sys.argv, "--disable_auditwheel_repair")
default_training_package_device = parse_arg_remove_boolean(sys.argv, "--default_training_package_device")
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Operating System :: POSIX :: Linux",
"Operating System :: Microsoft :: Windows",
"Operating System :: MacOS",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"Programming Language :: Python",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
]
if enable_training or enable_training_apis:
packages.append("onnxruntime.training")
if enable_training:
packages.extend(
[
"onnxruntime.training.amp",
"onnxruntime.training.experimental",
"onnxruntime.training.experimental.gradient_graph",
"onnxruntime.training.optim",
"onnxruntime.training.ortmodule",
"onnxruntime.training.ortmodule.experimental",
"onnxruntime.training.ortmodule.experimental.json_config",
"onnxruntime.training.ortmodule.experimental.hierarchical_ortmodule",
"onnxruntime.training.ortmodule.torch_cpp_extensions",
"onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.aten_op_executor",
"onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.torch_interop_utils",
"onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.torch_gpu_allocator",
"onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.fused_ops",
"onnxruntime.training.ortmodule.graph_optimizers",
"onnxruntime.training.ortmodule.experimental.pipe",
"onnxruntime.training.ort_triton",
"onnxruntime.training.ort_triton.kernel",
"onnxruntime.training.utils",
"onnxruntime.training.utils.data",
"onnxruntime.training.utils.hooks",
"onnxruntime.training.api",
"onnxruntime.training.onnxblock",
"onnxruntime.training.onnxblock.loss",
"onnxruntime.training.onnxblock.optim",
]
)
package_data["onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.aten_op_executor"] = ["*.cc"]
package_data["onnxruntime.training.ortmodule.torch_cpp_extensions.cpu.torch_interop_utils"] = ["*.cc", "*.h"]
package_data["onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.torch_gpu_allocator"] = ["*.cc"]
package_data["onnxruntime.training.ortmodule.torch_cpp_extensions.cuda.fused_ops"] = [
"*.cpp",
"*.cu",
"*.cuh",
"*.h",
]
requirements_file = "requirements-training.txt"
# with training, we want to follow this naming convention:
# stable:
# onnxruntime-training-1.7.0+cu111-cp36-cp36m-linux_x86_64.whl
# nightly:
# onnxruntime-training-1.7.0.dev20210408+cu111-cp36-cp36m-linux_x86_64.whl
# this is needed immediately by pytorch/ort so that the user is able to
# install an onnxruntime training package with matching torch cuda version.
if not is_openvino:
# To support the package consisting of both openvino and training modules part of it
package_name = "onnxruntime-training"
disable_local_version = environ.get("ORT_DISABLE_PYTHON_PACKAGE_LOCAL_VERSION", "0")
disable_local_version = (
disable_local_version == "1"
or disable_local_version.lower() == "true"
or disable_local_version.lower() == "yes"
)
# local version should be disabled for internal feeds.
if not disable_local_version:
# we want put default training packages to pypi. pypi does not accept package with a local version.
if not default_training_package_device or nightly_build:
if cuda_version:
# removing '.' to make Cuda version number in the same form as Pytorch.
local_version = "+cu" + cuda_version.replace(".", "")
elif rocm_version:
# removing '.' to make Rocm version number in the same form as Pytorch.
local_version = "+rocm" + rocm_version.replace(".", "")
else:
# cpu version for documentation
local_version = "+cpu"
else:
if not (cuda_version or rocm_version):
# Training CPU package for ADO feeds is called onnxruntime-training-cpu
package_name = "onnxruntime-training-cpu"
if rocm_version:
# Training ROCM package for ADO feeds is called onnxruntime-training-rocm
package_name = "onnxruntime-training-rocm"
if package_name == "onnxruntime-tvm":
packages += ["onnxruntime.providers.tvm"]
package_data["onnxruntime"] = data + examples + extra
version_number = ""
with open("VERSION_NUMBER") as f:
version_number = f.readline().strip()
if nightly_build:
# https://docs.microsoft.com/en-us/azure/devops/pipelines/build/variables
build_suffix = environ.get("BUILD_BUILDNUMBER")
if build_suffix is None:
# The following line is only for local testing
build_suffix = str(datetime.datetime.now().date().strftime("%Y%m%d"))
else:
build_suffix = build_suffix.replace(".", "")
if len(build_suffix) > 8 and len(build_suffix) < 12:
# we want to format the build_suffix to avoid (the 12th run on 20210630 vs the first run on 20210701):
# 2021063012 > 202107011
# in above 2021063012 is treated as the latest which is incorrect.
# we want to convert the format to:
# 20210630012 < 20210701001
# where the first 8 digits are date. the last 3 digits are run count.
# as long as there are less than 1000 runs per day, we will not have the problem.
# to test this code locally, run:
# NIGHTLY_BUILD=1 BUILD_BUILDNUMBER=202107011 python tools/ci_build/build.py --config RelWithDebInfo \
# --enable_training --use_cuda --cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu/ \
# --nccl_home /usr/lib/x86_64-linux-gnu/ --build_dir build/Linux --build --build_wheel --skip_tests \
# --cuda_version 11.1
def check_date_format(date_str):
try:
datetime.datetime.strptime(date_str, "%Y%m%d")
return True
except Exception:
return False
def reformat_run_count(count_str):
try:
count = int(count_str)
if count >= 0 and count < 1000:
return f"{count:03}"
elif count >= 1000:
raise RuntimeError(f"Too many builds for the same day: {count}")
return ""
except Exception:
return ""
build_suffix_is_date_format = check_date_format(build_suffix[:8])
build_suffix_run_count = reformat_run_count(build_suffix[8:])
if build_suffix_is_date_format and build_suffix_run_count:
build_suffix = build_suffix[:8] + build_suffix_run_count
elif len(build_suffix) >= 12:
raise RuntimeError(f'Incorrect build suffix: "{build_suffix}"')
if enable_training:
from packaging import version
from packaging.version import Version
# with training package, we need to bump up version minor number so that
# nightly releases take precedence over the latest release when --pre is used during pip install.
# eventually this shall be the behavior of all onnxruntime releases.
# alternatively we may bump up version number right after every release.
ort_version = version.parse(version_number)
if isinstance(ort_version, Version):
# TODO: this is the last time we have to do this!!!
# We shall bump up release number right after release cut.
if ort_version.major == 1 and ort_version.minor == 8 and ort_version.micro == 0:
version_number = f"{ort_version.major}.{ort_version.minor + 1}.{ort_version.micro}"
version_number = version_number + ".dev" + build_suffix
if local_version:
version_number = version_number + local_version
if is_rocm and enable_rocm_profiling:
version_number = version_number + ".profiling"
if wheel_name_suffix:
if not (enable_training and wheel_name_suffix == "gpu"):
# for training packages, local version is used to indicate device types
package_name = f"{package_name}-{wheel_name_suffix}"
cmd_classes = {}
if bdist_wheel is not None:
cmd_classes["bdist_wheel"] = bdist_wheel
cmd_classes["install"] = InstallCommand
cmd_classes["build_ext"] = build_ext
requirements_path = path.join(getcwd(), requirements_file)
if not path.exists(requirements_path):
this = path.dirname(__file__)
requirements_path = path.join(this, requirements_file)
if not path.exists(requirements_path):
raise FileNotFoundError("Unable to find " + requirements_file)
with open(requirements_path) as f:
install_requires = f.read().splitlines()
def save_build_and_package_info(package_name, version_number, cuda_version, rocm_version):
sys.path.append(path.join(path.dirname(__file__), "onnxruntime", "python"))
from onnxruntime_collect_build_info import find_cudart_versions
version_path = path.join("onnxruntime", "capi", "build_and_package_info.py")
with open(version_path, "w") as f:
f.write(f"package_name = '{package_name}'\n")
f.write(f"__version__ = '{version_number}'\n")
if cuda_version:
f.write(f"cuda_version = '{cuda_version}'\n")
# The cudart version used in building training packages in Linux.
# It is possible to parse version.json at cuda_home in build.py, then pass in the parameter directly.
if enable_training and platform.system().lower() == "linux":
cudart_versions = find_cudart_versions(build_env=True)
if cudart_versions and len(cudart_versions) == 1:
f.write(f"cudart_version = {cudart_versions[0]}\n")
else:
print(
"Error getting cudart version. ",
(
"did not find any cudart library"
if not cudart_versions or len(cudart_versions) == 0
else "found multiple cudart libraries"
),
)
elif rocm_version:
f.write(f"rocm_version = '{rocm_version}'\n")
save_build_and_package_info(package_name, version_number, cuda_version, rocm_version)
extras_require = {}
if package_name == "onnxruntime-gpu" and is_cuda_version_12:
extras_require = {
"cuda": [
"nvidia-cuda-nvrtc-cu12~=12.0",
"nvidia-cuda-runtime-cu12~=12.0",
"nvidia-cufft-cu12~=11.0",
"nvidia-curand-cu12~=10.0",
],
"cudnn": [
"nvidia-cudnn-cu12~=9.0",
],
}
setup(
name=package_name,
version=version_number,
description="ONNX Runtime is a runtime accelerator for Machine Learning models",
long_description=long_description,
author="Microsoft Corporation",
author_email="onnxruntime@microsoft.com",
cmdclass=cmd_classes,
license="MIT License",
packages=packages,
ext_modules=ext_modules,
package_data=package_data,
url="https://onnxruntime.ai",
download_url="https://github.com/microsoft/onnxruntime/tags",
data_files=data_files,
install_requires=install_requires,
extras_require=extras_require,
python_requires=">=3.10",
keywords="onnx machine learning",
entry_points={
"console_scripts": [
"onnxruntime_test = onnxruntime.tools.onnxruntime_test:main",
]
},
classifiers=classifiers,
)
|