1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# Memory Optimizer for ONNX Runtime Training
## Introduction
ONNX Runtime Training provides a capability trading node/subgraph re-computations for better memory efficiency.
Specifically, a list of re-computable operators is pre-defined, with which memory optimizer graph transformer will iterate the graph to find all re-computable subgraph candidates.
When training with `ORTModule`, by default, the graph transformer will scan the execution graph to find all eligible subgraphs to recompute, along with sizes that can be saved. Users can pick up some of the subgraphs to enable by environment variables.
## When memory optimizer can help?
Classical scenarios include:
- `ORTModule` runs a model with batch size B (for example 2^N), the memory bandwidth and compute are not fully saturated, while it hits OOM to run a bigger batch size (for example 2^(N+1)).
- For big models, `ORTModule` fails to run the minimum allowed batch size, so performance can be compromised for a successful run.
Not all models and recipes need this optimizer technique. Imagine if your training recipe uses a batch size 6 (GPU compute and memory are fully saturated), and you don't need bump it to 8 to maintain a fixed global batch size. Enabling recompute maybe not bring better throughput on batch size 8 than the original batch size 6.
## Usage
Make sure ONNX Runtime training wheel is installed and correctly configured.
Integrate models using `ORTModule`.
```diff
model = build_model()
+ from onnxruntime.training.ortmodule import ORTModule
+ model = ORTModule(model)
```
There are two modes to enable the memory optimizations:
- Transformer layerwise recompute, e.g. aggressively recompute all supported nodes within each transformer layer (usually including attention and mlp sublayers), enabled by `export ORTMODULE_MEMORY_OPT_LEVEL=1`. In this mode, `ORTMODULE_MEMORY_OPT_CONFIG` env values passed by users are not respected.
- Manual selected subgraph recompute, enabled by `export ORTMODULE_MEMORY_OPT_LEVEL=0` and `export ORTMODULE_MEMORY_OPT_CONFIG=<config file path>`. This is an advanced usage, that allows users to find the most suitable graphs to recompute, at the cost of overhead to look for the best plans. The format for its content is:
```
[
"<plan1 config>",
"<plan2 config>",
...
]
```
### Mode 1 - Simple Usage (Transformer Layerwise Recompute)
1. Set memory optimization level to be TRANSFORMER_LAYERWISE_RECOMPUTE, by `export ORTMODULE_MEMORY_OPT_LEVEL=1`
2. Run the training as usual; check the logs, you could find something like this if the current log level <= LogLevel.INFO:
```
Memory Optimizer : ON : Memory Optimization Level: [TRANSFORMER_LAYERWISE_RECOMPUTE], Optimization Config: mem_opt.json
Configs Freq Max Saving(Bytes) Saving Symbolic(Bytes)
- Plan 1 : ON : Reshape+Where+:1:-1 1 134,217,728 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1**2
- Plan 2 : ON : BiasSoftmax+:1:-1 1 134,086,656 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 3 : ON : Cast+:1:-1 1 67,043,328 64.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 4 : ON : BiasGelu+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 5 : ON : FusedMatMul+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 6 : ON : Add+:1:-1 1 5,237,760 5120.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 7 : ON : Reshape+Unsqueeze+Unsqueeze+Cast+Sub+Mul+Cast+:1:-1 1 4,096 4.0*inputs_input_ids_dim0*inputs_input_ids_dim1
- Plan 8 : OFF : Cast+:2:-1 1 2,048 2.0*inputs_input_ids_dim0*inputs_input_ids_dim1
```
3. As shown above, `Config` is a string representative for a re-computable subgraph. All are enabled for recompute in this case.
4. By `export ORTMODULE_MEMORY_OPT_LEVEL=2`, all plans including compromised recomptable subgraphs will also be enabled.
### Mode 2 - Advanced Usage (User Selected Subgraph Recompute)
1. Be noted `ORTMODULE_MEMORY_OPT_LEVEL` is by default be 0. Run the training as usual; then stop it after training a few steps.
2. Check the logs, you could find something like this if the current log level <= LogLevel.INFO::
```
Memory Optimizer : OFF : Enable with env ORTMODULE_MEMORY_OPT_LEVEL=1 or ORTMODULE_MEMORY_OPT_CONFIG=<config file path>
Configs Freq Max Saving(Bytes) Saving Symbolic(Bytes)
- Plan 1 : OFF : Reshape+Where+:1:-1 1 134,217,728 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1**2
- Plan 2 : OFF : BiasSoftmax+:1:-1 1 134,086,656 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 3 : OFF : Cast+:1:-1 1 67,043,328 64.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 4 : OFF : BiasGelu+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 5 : OFF : FusedMatMul+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 6 : OFF : Add+:1:-1 1 5,237,760 5120.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 7 : OFF : Reshape+Unsqueeze+Unsqueeze+Cast+Sub+Mul+Cast+:1:-1 1 4,096 4.0*inputs_input_ids_dim0*inputs_input_ids_dim1
- Plan 8 : OFF : Cast+:2:-1 1 2,048 2.0*inputs_input_ids_dim0*inputs_input_ids_dim1
```
3. As shown above, `Config` is a string representative for a re-computable subgraph. All are disabled for recompute in this case.
4. Set environment variable `ORTMODULE_MEMORY_OPT_CONFIG` to enable some of the subgraphs to do recompute.
```bash
export ORTMODULE_MEMORY_OPT_CONFIG="mem_opt.json"
# Content of mem_opt.json:
[
"BiasGelu+:1:1",
"Dropout+:1:-1"
]
# Use comma as a separator for enabling more than one subgraphs in the json file.
# Explanation:
# > BiasGelu+ is the subgraph string representative;
# > 1 in the middle indicates 'Recompute' is enabled (0, on the contrary indicates it's disabled)
# > The last 1 means the initial 1 subgraph occurrences will be recomputed, all others are left as it is, filling `-1` will make all occurrences be recomputed.
```
5. Then run the training again, and you will see logs like this:
```
Memory Optimizer : ON : Memory Optimization Level: [USER_SPECIFIED], Optimization Config: mem_opt.json
Configs Freq Max Saving(Bytes) Saving Symbolic(Bytes)
- Plan 1 : OFF : Reshape+Where+:1:-1 1 134,217,728 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1**2
- Plan 2 : OFF : BiasSoftmax+:1:-1 1 134,086,656 128.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 3 : OFF : Cast+:1:-1 1 67,043,328 64.0*inputs_input_ids_dim0*inputs_input_ids_dim1*(inputs_input_ids_dim1 - 1)
- Plan 4 : ON : BiasGelu+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 5 : OFF : FusedMatMul+:1:-1 1 20,951,040 20480.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 6 : OFF : Add+:1:-1 1 5,237,760 5120.0*inputs_input_ids_dim0*(inputs_input_ids_dim1 - 1)
- Plan 7 : OFF : Reshape+Unsqueeze+Unsqueeze+Cast+Sub+Mul+Cast+:1:-1 1 4,096 4.0*inputs_input_ids_dim0*inputs_input_ids_dim1
- Plan 8 : OFF : Cast+:2:-1 1 2,048 2.0*inputs_input_ids_dim0*inputs_input_ids_dim1
```
6. You may need iterate a few times on step 4 and 5 until you find a good config for this model to run a bigger batch size. Or you may fail to find if memory optimization does not apply to the model well.
## Optimization Configuration
The basic optimization unit is represented with a unique `cluster id`, for example `BiasGelu+` is one `cluster id`.
Following `cluster id` is the `optimization strategy`: 0 - none, 1 - recompute, 2 - recompute with compromised memory saving.
Following `optimization strategy` is the `request count` to apply the given optimization. Using `-1` to apply all. This would give user a bit more flexibility to avoid unnecessary memory saving.
### Compromised Recompute
If you check the above logs, there is a config `Cast+:2:-1`, `2` indicates it's a recomputation than can save part of the stashed activation size, not all. Recompute the subgraphs under it usually will save part of the activation (for example half of them), not all of them. Follow the same way to enable it.
## Dev Notes
### Memory Optimization Debug Infos
Using following log level
> ort_model = ORTModule(pt_model, DebugOptions(log_level=LogLevel.DEVINFO))
Besides the logs shown in `LogLevel.INFO`, you can also see different node patterns that can apply different optimization options.
The way we get the table:
- For a specific node, it might has different optimization options, we [generates](../orttraining/orttraining/core/optimizer/memory_optimizer/common.h#L124C26-L124C26) a hash (called `Node Cluster ID`) for the node according to all available optimization options.
- Map all nodes having same `Node Cluster ID` in buckets, each bucket is displayed as one row.
```
MemoryInsight Summary - User config: not provided
===========================================================================================================================================
|Freq | Memory Optimization Opportunities (Clustered by node-level activation patterns) |
|_ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|6 |For each row options are mutually exclusive, only one of them can be enabled. |
| | |
| |>>Option 1 : Recompute subgraph FusedMatMul+Add+Reshape+ |
| | Status : Disabled. |
| | Stashed Activations: |
| | - ReuseFreq : Output 0(6), |
| | - Output 0 : [((inputs_input_ids_dim0)*(inputs_input_ids_dim1)*(32)*(240))], byte/elem: 2, 100% saved |
|_ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|5 |For each row options are mutually exclusive, only one of them can be enabled. |
| | |
| |>>Option 1 : Recompute subgraph FusedMatMul+ |
| | Status : Disabled. |
| | Stashed Activations: |
| | - Output 0 : [((inputs_input_ids_dim0)*(inputs_input_ids_dim1)*(10240))], byte/elem: 2, 100% saved |
|_ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|5 |For each row options are mutually exclusive, only one of them can be enabled. |
| | |
| |>>Option 1 : Recompute subgraph Cast+ |
| | Status : Disabled. |
| | Stashed Activations: |
| | - Output 0 : [((inputs_input_ids_dim0)*(32)*(inputs_input_ids_dim1)*(inputs_input_ids_dim1))], byte/elem: 2, 100% saved |
|_ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
|1 |For each row options are mutually exclusive, only one of them can be enabled. |
| | |
| |>>Option 1 : Recompute subgraph Reshape+Unsqueeze+Unsqueeze+Cast+Sub+Mul+Cast+ |
| | Status : Disabled. |
| | Stashed Activations: |
| | - Output 0 : [((inputs_input_ids_dim0)*(1)*(1)*(inputs_input_ids_dim1))], byte/elem: 4, 100% saved |
| | |
| |>>Option 2 : RecomputeWithCompromise subgraph Cast+ |
| | Status : Disabled. |
| | Stashed Activations: |
| | - Output 0 : [((inputs_input_ids_dim0)*(1)*(1)*(inputs_input_ids_dim1))], byte/elem: 4, 50% saved |
|_ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
```
## Notes
The feature is in the experimental stage, we will tune and refine it according to real use cases.
|