File: TensorHelper.mm

package info (click to toggle)
onnxruntime 1.23.2%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 340,744 kB
  • sloc: cpp: 3,222,135; python: 188,267; ansic: 114,318; asm: 37,927; cs: 36,849; java: 10,962; javascript: 6,811; pascal: 4,126; sh: 2,996; xml: 705; objc: 281; makefile: 67
file content (275 lines) | stat: -rw-r--r-- 11,737 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#import "TensorHelper.h"
#import <Foundation/Foundation.h>

@implementation TensorHelper

/**
 * Supported tensor data type
 */
NSString* const JsTensorTypeBool = @"bool";
NSString* const JsTensorTypeUnsignedByte = @"uint8";
NSString* const JsTensorTypeByte = @"int8";
NSString* const JsTensorTypeShort = @"int16";
NSString* const JsTensorTypeInt = @"int32";
NSString* const JsTensorTypeLong = @"int64";
NSString* const JsTensorTypeFloat = @"float32";
NSString* const JsTensorTypeDouble = @"float64";
NSString* const JsTensorTypeString = @"string";

/**
 * It creates an input tensor from a map passed by react native js.
 * 'data' is blob object and the buffer is stored in RCTBlobManager. It first resolve it and creates a tensor.
 */
+ (Ort::Value)createInputTensor:(RCTBlobManager*)blobManager
                          input:(NSDictionary*)input
                   ortAllocator:(OrtAllocator*)ortAllocator
                    allocations:(std::vector<Ort::MemoryAllocation>&)allocations {
  // shape
  NSArray* dimsArray = [input objectForKey:@"dims"];
  std::vector<int64_t> dims;
  dims.reserve(dimsArray.count);
  for (NSNumber* dim in dimsArray) {
    dims.emplace_back([dim longLongValue]);
  }

  // type
  ONNXTensorElementDataType tensorType = [self getOnnxTensorType:[input objectForKey:@"type"]];

  // data
  if (tensorType == ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING) {
    NSArray* values = [input objectForKey:@"data"];
    auto inputTensor =
        Ort::Value::CreateTensor(ortAllocator, dims.data(), dims.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING);
    size_t index = 0;
    for (NSString* value in values) {
      inputTensor.FillStringTensorElement([value UTF8String], index++);
    }
    return inputTensor;
  } else {
    NSDictionary* data = [input objectForKey:@"data"];
    NSString* blobId = [data objectForKey:@"blobId"];
    long size = [[data objectForKey:@"size"] longValue];
    long offset = [[data objectForKey:@"offset"] longValue];
    auto buffer = [blobManager resolve:blobId offset:offset size:size];
    Ort::Value inputTensor = [self createInputTensor:tensorType
                                                dims:dims
                                              buffer:buffer
                                        ortAllocator:ortAllocator
                                         allocations:allocations];
    [blobManager remove:blobId];
    return inputTensor;
  }
}

/**
 * It creates an output map from an output tensor.
 * a data array is store in RCTBlobManager.
 */
+ (NSDictionary*)createOutputTensor:(RCTBlobManager*)blobManager
                        outputNames:(const std::vector<const char*>&)outputNames
                             values:(const std::vector<Ort::Value>&)values {
  if (outputNames.size() != values.size()) {
    NSException* exception = [NSException exceptionWithName:@"create output tensor"
                                                     reason:@"output name and tensor count mismatched"
                                                   userInfo:nil];
    @throw exception;
  }

  NSMutableDictionary* outputTensorMap = [NSMutableDictionary dictionary];

  for (size_t i = 0; i < outputNames.size(); ++i) {
    const auto outputName = outputNames[i];
    const Ort::Value& value = values[i];

    if (!value.IsTensor()) {
      NSException* exception = [NSException exceptionWithName:@"create output tensor"
                                                       reason:@"only tensor type is supported"
                                                     userInfo:nil];
      @throw exception;
    }

    NSMutableDictionary* outputTensor = [NSMutableDictionary dictionary];

    // dims
    NSMutableArray* outputDims = [NSMutableArray array];
    auto dims = value.GetTensorTypeAndShapeInfo().GetShape();
    for (auto dim : dims) {
      [outputDims addObject:[NSNumber numberWithLongLong:dim]];
    }
    outputTensor[@"dims"] = outputDims;

    // type
    outputTensor[@"type"] = [self getJsTensorType:value.GetTensorTypeAndShapeInfo().GetElementType()];

    // data
    if (value.GetTensorTypeAndShapeInfo().GetElementType() == ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING) {
      NSMutableArray* buffer = [NSMutableArray array];
      for (NSInteger i = 0; i < value.GetTensorTypeAndShapeInfo().GetElementCount(); ++i) {
        size_t elementLength = value.GetStringTensorElementLength(i);
        std::string element(elementLength, '\0');
        value.GetStringTensorElement(elementLength, i, (void*)element.data());
        [buffer addObject:[NSString stringWithUTF8String:element.data()]];
      }
      outputTensor[@"data"] = buffer;
    } else {
      NSData* data = [self createOutputTensor:value];
      NSString* blobId = [blobManager store:data];
      outputTensor[@"data"] = @{
        @"blobId" : blobId,
        @"offset" : @0,
        @"size" : @(data.length),
      };
    }

    outputTensorMap[[NSString stringWithUTF8String:outputName]] = outputTensor;
  }

  return outputTensorMap;
}

template <typename T>
static Ort::Value createInputTensorT(OrtAllocator* ortAllocator, const std::vector<int64_t>& dims, NSData* buffer,
                                     std::vector<Ort::MemoryAllocation>& allocations) {
  T* dataBuffer = static_cast<T*>(ortAllocator->Alloc(ortAllocator, [buffer length]));
  allocations.emplace_back(ortAllocator, dataBuffer, [buffer length]);
  memcpy(static_cast<void*>(dataBuffer), [buffer bytes], [buffer length]);

  return Ort::Value::CreateTensor<T>(ortAllocator->Info(ortAllocator), dataBuffer, buffer.length / sizeof(T),
                                     dims.data(), dims.size());
}

+ (Ort::Value)createInputTensor:(ONNXTensorElementDataType)tensorType
                           dims:(const std::vector<int64_t>&)dims
                         buffer:(NSData*)buffer
                   ortAllocator:(OrtAllocator*)ortAllocator
                    allocations:(std::vector<Ort::MemoryAllocation>&)allocations {
  switch (tensorType) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
      return createInputTensorT<float>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
      return createInputTensorT<uint8_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:
      return createInputTensorT<int8_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16:
      return createInputTensorT<int16_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
      return createInputTensorT<int32_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:
      return createInputTensorT<int64_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL:
      return createInputTensorT<bool>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE:
      return createInputTensorT<double_t>(ortAllocator, dims, buffer, allocations);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16:
    default: {
      NSException* exception = [NSException exceptionWithName:@"create input tensor"
                                                       reason:@"unsupported tensor type"
                                                     userInfo:nil];
      @throw exception;
    }
  }
}

template <typename T>
static NSData* createOutputTensorT(const Ort::Value& tensor) {
  const auto data = tensor.GetTensorData<T>();
  return [NSData dataWithBytesNoCopy:(void*)data
                              length:tensor.GetTensorTypeAndShapeInfo().GetElementCount() * sizeof(T)
                        freeWhenDone:false];
}

+ (NSData*)createOutputTensor:(const Ort::Value&)tensor {
  ONNXTensorElementDataType tensorType = tensor.GetTensorTypeAndShapeInfo().GetElementType();

  switch (tensorType) {
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT:
      return createOutputTensorT<float>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8:
      return createOutputTensorT<uint8_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8:
      return createOutputTensorT<int8_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16:
      return createOutputTensorT<int16_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32:
      return createOutputTensorT<int32_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64:
      return createOutputTensorT<int64_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL:
      return createOutputTensorT<bool>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE:
      return createOutputTensorT<double_t>(tensor);
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128:
    case ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16:
    default: {
      NSException* exception = [NSException exceptionWithName:@"create output tensor"
                                                       reason:@"unsupported tensor type"
                                                     userInfo:nil];
      @throw exception;
    }
  }
}

NSDictionary* JsTensorTypeToOnnxTensorTypeMap;
NSDictionary* OnnxTensorTypeToJsTensorTypeMap;

+ (void)initialize {
  JsTensorTypeToOnnxTensorTypeMap = @{
    JsTensorTypeFloat : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT),
    JsTensorTypeUnsignedByte : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8),
    JsTensorTypeByte : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8),
    JsTensorTypeShort : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16),
    JsTensorTypeInt : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32),
    JsTensorTypeLong : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64),
    JsTensorTypeString : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING),
    JsTensorTypeBool : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL),
    JsTensorTypeDouble : @(ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE)
  };

  OnnxTensorTypeToJsTensorTypeMap = @{
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT) : JsTensorTypeFloat,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8) : JsTensorTypeUnsignedByte,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8) : JsTensorTypeByte,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16) : JsTensorTypeShort,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32) : JsTensorTypeInt,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64) : JsTensorTypeLong,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING) : JsTensorTypeString,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL) : JsTensorTypeBool,
    @(ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE) : JsTensorTypeDouble
  };
}

+ (ONNXTensorElementDataType)getOnnxTensorType:(const NSString*)type {
  if ([JsTensorTypeToOnnxTensorTypeMap objectForKey:type]) {
    return (ONNXTensorElementDataType)[JsTensorTypeToOnnxTensorTypeMap[type] intValue];
  } else {
    return ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
  }
}

+ (NSString*)getJsTensorType:(ONNXTensorElementDataType)type {
  if ([OnnxTensorTypeToJsTensorTypeMap objectForKey:@(type)]) {
    return OnnxTensorTypeToJsTensorTypeMap[@(type)];
  } else {
    return @"undefined";
  }
}

@end