1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
#![allow(non_snake_case)]
use std::env::args;
#[cfg(not(target_family = "windows"))]
use std::os::unix::ffi::OsStrExt;
#[cfg(target_family = "windows")]
use std::os::windows::ffi::OsStrExt;
use onnxruntime_sys::{
onnxruntime, GraphOptimizationLevel, ONNXTensorElementDataType, OrtAllocator, OrtAllocatorType,
OrtApi, OrtEnv, OrtLoggingLevel, OrtMemType, OrtMemoryInfo, OrtRunOptions, OrtSession,
OrtSessionOptions, OrtStatus, OrtTensorTypeAndShapeInfo, OrtTypeInfo, OrtValue,
ORT_API_VERSION,
};
// https://github.com/microsoft/onnxruntime/blob/v1.4.0/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
fn main() {
let onnxruntime_path = args()
.nth(1)
.expect("This example expects a path to the ONNXRuntime shared library");
let (_, g_ort) = unsafe {
let ort = onnxruntime::new(onnxruntime_path);
let ort = ort.expect("Error initializing onnxruntime");
let g_ort = ort.OrtGetApiBase().as_ref().unwrap().GetApi.unwrap()(ORT_API_VERSION);
(ort, g_ort)
};
assert_ne!(g_ort, std::ptr::null_mut());
//*************************************************************************
// initialize environment...one environment per process
// environment maintains thread pools and other state info
let mut env_ptr: *mut OrtEnv = std::ptr::null_mut();
let env_name = std::ffi::CString::new("test").unwrap();
let status = unsafe {
g_ort.as_ref().unwrap().CreateEnv.unwrap()(
OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
env_name.as_ptr(),
&mut env_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(env_ptr, std::ptr::null_mut());
// initialize session options if needed
let mut session_options_ptr: *mut OrtSessionOptions = std::ptr::null_mut();
let status =
unsafe { g_ort.as_ref().unwrap().CreateSessionOptions.unwrap()(&mut session_options_ptr) };
CheckStatus(g_ort, status).unwrap();
unsafe { g_ort.as_ref().unwrap().SetIntraOpNumThreads.unwrap()(session_options_ptr, 1) };
assert_ne!(session_options_ptr, std::ptr::null_mut());
// Sets graph optimization level
unsafe {
g_ort
.as_ref()
.unwrap()
.SetSessionGraphOptimizationLevel
.unwrap()(
session_options_ptr,
GraphOptimizationLevel::ORT_ENABLE_BASIC,
)
};
// Optionally add more execution providers via session_options
// E.g. for CUDA include cuda_provider_factory.h and uncomment the following line:
// OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
//*************************************************************************
// create session and load model into memory
// NOTE: Original C version loaded SqueezeNet 1.0 (ONNX version: 1.3, Opset version: 8,
// https://github.com/onnx/models/blob/main/vision/classification/squeezenet/model/squeezenet1.0-8.onnx)
// Download it:
// curl -LO "https://github.com/onnx/models/raw/main/vision/classification/squeezenet/model/squeezenet1.0-8.onnx"
// Reference: https://github.com/onnx/models/tree/main/vision/classification/squeezenet#model
let model_path = std::ffi::OsString::from("squeezenet1.0-8.onnx");
#[cfg(target_family = "windows")]
let model_path: Vec<u16> = model_path
.encode_wide()
.chain(std::iter::once(0)) // Make sure we have a null terminated string
.collect();
#[cfg(not(target_family = "windows"))]
let model_path: Vec<std::os::raw::c_char> = model_path
.as_bytes()
.iter()
.chain(std::iter::once(&b'\0')) // Make sure we have a null terminated string
.map(|b| *b as std::os::raw::c_char)
.collect();
let mut session_ptr: *mut OrtSession = std::ptr::null_mut();
println!("Using Onnxruntime C API");
let status = unsafe {
g_ort.as_ref().unwrap().CreateSession.unwrap()(
env_ptr,
model_path.as_ptr(),
session_options_ptr,
&mut session_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(session_ptr, std::ptr::null_mut());
//*************************************************************************
// print model input layer (node names, types, shape etc.)
// size_t num_input_nodes;
let mut allocator_ptr: *mut OrtAllocator = std::ptr::null_mut();
let status = unsafe {
g_ort
.as_ref()
.unwrap()
.GetAllocatorWithDefaultOptions
.unwrap()(&mut allocator_ptr)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(allocator_ptr, std::ptr::null_mut());
// print number of model input nodes
let mut num_input_nodes: usize = 0;
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputCount.unwrap()(session_ptr, &mut num_input_nodes)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(num_input_nodes, 0);
println!("Number of inputs = {:?}", num_input_nodes);
let mut input_node_names: Vec<&str> = Vec::new();
let mut input_node_dims: Vec<i64> = Vec::new(); // simplify... this model has only 1 input node {1, 3, 224, 224}.
// Otherwise need vector<vector<>>
// iterate over all input nodes
for i in 0..num_input_nodes {
// print input node names
let mut input_name: *mut i8 = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputName.unwrap()(
session_ptr,
i,
allocator_ptr,
&mut input_name,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(input_name, std::ptr::null_mut());
// WARNING: The C function SessionGetInputName allocates memory for the string.
// We cannot let Rust free that string, the C side must free the string.
// We thus convert the pointer to a string slice (&str).
let input_name = char_p_to_str(input_name).unwrap();
println!("Input {} : name={}", i, input_name);
input_node_names.push(input_name);
// print input node types
let mut typeinfo_ptr: *mut OrtTypeInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputTypeInfo.unwrap()(
session_ptr,
i,
&mut typeinfo_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(typeinfo_ptr, std::ptr::null_mut());
let mut tensor_info_ptr: *const OrtTensorTypeAndShapeInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().CastTypeInfoToTensorInfo.unwrap()(
typeinfo_ptr,
&mut tensor_info_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(tensor_info_ptr, std::ptr::null_mut());
let mut type_: ONNXTensorElementDataType =
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
let status = unsafe {
g_ort.as_ref().unwrap().GetTensorElementType.unwrap()(tensor_info_ptr, &mut type_)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(
type_,
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED
);
println!("Input {} : type={}", i, type_ as i32);
// print input shapes/dims
let mut num_dims = 0;
let status = unsafe {
g_ort.as_ref().unwrap().GetDimensionsCount.unwrap()(tensor_info_ptr, &mut num_dims)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(num_dims, 0);
println!("Input {} : num_dims={}", i, num_dims);
input_node_dims.resize_with(num_dims as usize, Default::default);
let status = unsafe {
g_ort.as_ref().unwrap().GetDimensions.unwrap()(
tensor_info_ptr,
input_node_dims.as_mut_ptr(),
num_dims,
)
};
CheckStatus(g_ort, status).unwrap();
for j in 0..num_dims {
println!("Input {} : dim {}={}", i, j, input_node_dims[j as usize]);
}
unsafe { g_ort.as_ref().unwrap().ReleaseTypeInfo.unwrap()(typeinfo_ptr) };
}
// Results should be...
// Number of inputs = 1
// Input 0 : name = data_0
// Input 0 : type = 1
// Input 0 : num_dims = 4
// Input 0 : dim 0 = 1
// Input 0 : dim 1 = 3
// Input 0 : dim 2 = 224
// Input 0 : dim 3 = 224
//*************************************************************************
// Similar operations to get output node information.
// Use OrtSessionGetOutputCount(), OrtSessionGetOutputName()
// OrtSessionGetOutputTypeInfo() as shown above.
//*************************************************************************
// Score the model using sample data, and inspect values
let input_tensor_size = 224 * 224 * 3; // simplify ... using known dim values to calculate size
// use OrtGetTensorShapeElementCount() to get official size!
let output_node_names = &["softmaxout_1"];
// initialize input data with values in [0.0, 1.0]
let mut input_tensor_values: Vec<f32> = (0..input_tensor_size)
.map(|i| (i as f32) / ((input_tensor_size + 1) as f32))
.collect();
// create input tensor object from data values
let mut memory_info_ptr: *mut OrtMemoryInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().CreateCpuMemoryInfo.unwrap()(
OrtAllocatorType::OrtArenaAllocator,
OrtMemType::OrtMemTypeDefault,
&mut memory_info_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(memory_info_ptr, std::ptr::null_mut());
// FIXME: Check me!
let mut input_tensor_ptr: *mut OrtValue = std::ptr::null_mut();
let input_tensor_ptr_ptr: *mut *mut OrtValue = &mut input_tensor_ptr;
let input_tensor_values_ptr: *mut std::ffi::c_void =
input_tensor_values.as_mut_ptr().cast::<std::ffi::c_void>();
assert_ne!(input_tensor_values_ptr, std::ptr::null_mut());
let shape: *const i64 = input_node_dims.as_ptr();
assert_ne!(shape, std::ptr::null_mut());
let status = unsafe {
g_ort
.as_ref()
.unwrap()
.CreateTensorWithDataAsOrtValue
.unwrap()(
memory_info_ptr,
input_tensor_values_ptr,
input_tensor_size * std::mem::size_of::<f32>(),
shape,
4,
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,
input_tensor_ptr_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(input_tensor_ptr, std::ptr::null_mut());
let mut is_tensor = 0;
let status =
unsafe { g_ort.as_ref().unwrap().IsTensor.unwrap()(input_tensor_ptr, &mut is_tensor) };
CheckStatus(g_ort, status).unwrap();
assert_eq!(is_tensor, 1);
let input_tensor_ptr2: *const OrtValue = input_tensor_ptr as *const OrtValue;
let input_tensor_ptr3: *const *const OrtValue = &input_tensor_ptr2;
unsafe { g_ort.as_ref().unwrap().ReleaseMemoryInfo.unwrap()(memory_info_ptr) };
// score model & input tensor, get back output tensor
let input_node_names_cstring: Vec<std::ffi::CString> = input_node_names
.into_iter()
.map(|n| std::ffi::CString::new(n).unwrap())
.collect();
let input_node_names_ptr: Vec<*const i8> = input_node_names_cstring
.into_iter()
.map(|n| n.into_raw() as *const i8)
.collect();
let input_node_names_ptr_ptr: *const *const i8 = input_node_names_ptr.as_ptr();
let output_node_names_cstring: Vec<std::ffi::CString> = output_node_names
.iter()
.map(|n| std::ffi::CString::new(*n).unwrap())
.collect();
let output_node_names_ptr: Vec<*const i8> = output_node_names_cstring
.iter()
.map(|n| n.as_ptr().cast::<i8>())
.collect();
let output_node_names_ptr_ptr: *const *const i8 = output_node_names_ptr.as_ptr();
let _input_node_names_cstring =
unsafe { std::ffi::CString::from_raw(input_node_names_ptr[0] as *mut i8) };
let run_options_ptr: *const OrtRunOptions = std::ptr::null();
let mut output_tensor_ptr: *mut OrtValue = std::ptr::null_mut();
let output_tensor_ptr_ptr: *mut *mut OrtValue = &mut output_tensor_ptr;
let status = unsafe {
g_ort.as_ref().unwrap().Run.unwrap()(
session_ptr,
run_options_ptr,
input_node_names_ptr_ptr,
input_tensor_ptr3,
1,
output_node_names_ptr_ptr,
1,
output_tensor_ptr_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(output_tensor_ptr, std::ptr::null_mut());
let mut is_tensor = 0;
let status =
unsafe { g_ort.as_ref().unwrap().IsTensor.unwrap()(output_tensor_ptr, &mut is_tensor) };
CheckStatus(g_ort, status).unwrap();
assert_eq!(is_tensor, 1);
// Get pointer to output tensor float values
let mut floatarr: *mut f32 = std::ptr::null_mut();
let floatarr_ptr: *mut *mut f32 = &mut floatarr;
let floatarr_ptr_void: *mut *mut std::ffi::c_void =
floatarr_ptr.cast::<*mut std::ffi::c_void>();
let status = unsafe {
g_ort.as_ref().unwrap().GetTensorMutableData.unwrap()(output_tensor_ptr, floatarr_ptr_void)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(floatarr, std::ptr::null_mut());
assert!((unsafe { *floatarr.offset(0) } - 0.000_045).abs() < 1e-6);
// score the model, and print scores for first 5 classes
// NOTE: The C ONNX Runtime allocated the array, we shouldn't drop the vec
// but let C de-allocate instead.
let floatarr_vec: Vec<f32> = unsafe { Vec::from_raw_parts(floatarr, 5, 5) };
for i in 0..5 {
println!("Score for class [{}] = {}", i, floatarr_vec[i]);
}
std::mem::forget(floatarr_vec);
// Results should be as below...
// Score for class[0] = 0.000045
// Score for class[1] = 0.003846
// Score for class[2] = 0.000125
// Score for class[3] = 0.001180
// Score for class[4] = 0.001317
unsafe { g_ort.as_ref().unwrap().ReleaseValue.unwrap()(output_tensor_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseValue.unwrap()(input_tensor_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseSession.unwrap()(session_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseSessionOptions.unwrap()(session_options_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseEnv.unwrap()(env_ptr) };
println!("Done!");
}
fn CheckStatus(g_ort: *const OrtApi, status: *const OrtStatus) -> Result<(), String> {
if status != std::ptr::null() {
let raw = unsafe { g_ort.as_ref().unwrap().GetErrorMessage.unwrap()(status) };
Err(char_p_to_str(raw).unwrap().to_string())
} else {
Ok(())
}
}
fn char_p_to_str<'a>(raw: *const i8) -> Result<&'a str, std::str::Utf8Error> {
let c_str = unsafe { std::ffi::CStr::from_ptr(raw as *mut i8) };
c_str.to_str()
}
|