File: broadcast_matmul.py

package info (click to toggle)
onnxscript 0.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 12,384 kB
  • sloc: python: 75,957; sh: 41; makefile: 6
file content (212 lines) | stat: -rw-r--r-- 7,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Onnx Pattern Rewriting with match condition parameter.

This script shows how to define a rewriting rule based on patterns while
utilizing the match condition parameter.

First we write a dummy model with a several Reshape nodes and a Matmul node
===================
"""

import logging

import onnx

import onnxscript
from onnxscript import FLOAT, ir, opset18, script
from onnxscript.rewriter import pattern

logger = logging.getLogger(__name__)


@script()
def original_model(A: FLOAT[1, 4, 512, 512], B: FLOAT[1, 4, 512, 64]) -> FLOAT[1, 4, 512, 64]:
    # NOTE: Modified from `value_ints` to `value`
    shape_a = opset18.Constant(value=[4, 512, 512])
    reshape_a = opset18.Reshape(A, shape_a)
    shape_b = opset18.Constant(value=[4, 512, 64])
    reshape_b = opset18.Reshape(B, shape_b)
    matmul = opset18.MatMul(reshape_a, reshape_b)
    shape_c = opset18.Constant(value=[1, 4, 512, 64])
    result = opset18.Reshape(matmul, shape_c)
    return result


_model = original_model.to_model_proto()
onnx.checker.check_model(_model)


####################################
# The target pattern
# =====================


def two_reshapes_matmul_reshape_pattern(op, input_a, input_b, shape_a, shape_b, shape_c):
    reshape_a = op.Reshape(input_a, shape_a)
    reshape_b = op.Reshape(input_b, shape_b)
    matmul = op.MatMul(reshape_a, reshape_b)
    return op.Reshape(matmul, shape_c)


####################################
# The replacement pattern
# =====================


def matmul_pattern(op, input_a: ir.Value, input_b: ir.Value, **_):
    return op.MatMul(input_a, input_b)


####################################
# Write condition to check if we need to replace the pattern
# =====================


def check_if_not_need_reshape(
    context, input_a: ir.Value, input_b: ir.Value, shape_c: ir.Value, **_
) -> bool:
    """Condition to check if we need to replace the pattern.

    If matmul broadcasting is enough, then we don't need the reshapes.

    To validate this, we need to check the following:
    1. Input shapes check: input_a and input_b should be broadcastable
    2. Output shape check: shape_c should be the same as the output shape from the matmul(input_a, input_b)

    If the above are true, then we don't need the reshapes.

    Returns:
        True if we need to replace the pattern, False otherwise.
    """
    del context  # Reserved for future extensions

    input_a_shape = input_a.shape
    input_b_shape = input_b.shape
    shape_c_tensor = shape_c.const_value
    if shape_c_tensor is None:
        logger.info("The value 'shape_c' is not statically known.")
        return False

    if len(shape_c_tensor.shape) != 1:
        logger.info(
            "Unexpected final shape. The shape of 'shape' value is %s",
            shape_c_tensor.shape,
        )
        return False

    # NOTE: When there is a subset match with a pattern. The MatchResult won't have the shape
    # information. So, we need to check if the shape is None and return False.
    if input_a_shape is None or input_b_shape is None:
        logger.info("Shape information is not available for the inputs and outputs.")
        return False
    input_a_shape = input_a_shape.numpy()
    input_b_shape = input_b_shape.numpy()
    shape_c = shape_c_tensor.numpy().tolist()

    a_rank = len(input_a_shape)
    b_rank = len(input_b_shape)

    # TODO(justinchuby): Check shape size

    # 1. Check if input shapes are broadcastable
    # 1.a. If the first input is 1-D, check whether
    # the dim matches the last second dim of the second input.
    mimic_matmul_broadcast_behavior = False
    if a_rank < 2:
        if b_rank < 2:
            logger.info("Optimization of dot product is not supported yet.")
            return False
        if input_a_shape[-1] != input_b_shape[-2]:
            logger.info("Original shape is not MatMul compatible.")
            return False
        else:
            input_a_shape = [1, *input_a_shape]
            a_rank = len(input_a_shape)
            mimic_matmul_broadcast_behavior = True
    # 1.b. If the second input is 1-D, check whether
    # the dim matches the last dim of the first input.
    if b_rank < 2:
        if input_b_shape[-1] != input_a_shape[-1]:
            logger.info("Original shape is not MatMul compatible.")
            return False
        else:
            input_b_shape = [*input_b_shape, 1]
            b_rank = len(input_b_shape)
            mimic_matmul_broadcast_behavior = True
    # 1.c. If both inputs are at least 2-D, check whether
    # the last dimension of the first input matches the second
    # last dimension of the second input, and shape[:-2] are
    # broadcastable.
    input_a_shape_except_second_last_dim = [*input_a_shape[:-2], *[input_a_shape[-1]]]
    input_b_shape_except_last_dim = input_b_shape[:-1]
    broadcast_matmul_output_shape = [input_a_shape[-2], input_b_shape[-1]]
    for idx, (dim_from_a, dim_from_b) in enumerate(
        zip(
            reversed(input_a_shape_except_second_last_dim),
            reversed(input_b_shape_except_last_dim),
        )
    ):
        if dim_from_a not in {1, dim_from_b}:
            logger.info("Original shape is not broadcastable.")
            return False
        elif idx > 0:
            broadcast_matmul_output_shape = [
                max(dim_from_a, dim_from_b),
                *broadcast_matmul_output_shape,
            ]

    # 2. Check if output shape is the same as the output shape from the matmul(input_a, input_b)
    # Prepend the broadcast_matmul_output_shape with the longer shape of input
    if a_rank > b_rank:
        longer_shape = input_a_shape
        shorter_shape = input_b_shape
    else:
        longer_shape = input_b_shape
        shorter_shape = input_a_shape
    broadcast_matmul_output_shape = [
        *longer_shape[: -len(shorter_shape)],
        *broadcast_matmul_output_shape,
    ]
    if mimic_matmul_broadcast_behavior and b_rank == 2 and input_b_shape[-1] == 1:
        # If input_b is expanded to 2-D, then we need to remove the last dimension
        broadcast_matmul_output_shape = broadcast_matmul_output_shape[:-1]
    if mimic_matmul_broadcast_behavior and a_rank == 2 and input_a_shape[0] == 1:
        # If input_a is expanded to 2-D, then we need to remove the first dimension
        # of input_a, which would be the -2nd dimension of the output shape.
        broadcast_matmul_output_shape.pop(-2)
    if shape_c != broadcast_matmul_output_shape:
        logger.info(
            "Final output shape is not the same. Expected %s vs actual %s",
            shape_c,
            broadcast_matmul_output_shape,
        )
        return False

    return True


####################################
# Create Rewrite Rule and Apply to Model
# =====================


def apply_rewrite(model):
    # Create rewrite rules
    two_reshapes_matmul_reshape_rule = pattern.RewriteRule(
        two_reshapes_matmul_reshape_pattern,  # target pattern
        matmul_pattern,  # replacement pattern
        check_if_not_need_reshape,  # match_condition function
    )
    # Create a Rewrite Rule Set
    rewrite_rule_set = pattern.RewriteRuleSet([two_reshapes_matmul_reshape_rule])
    # Apply rewrite while passing match_condition
    model_with_rewrite = onnxscript.rewriter.rewrite(
        model,
        pattern_rewrite_rules=rewrite_rule_set,
    )
    return model_with_rewrite


_model_with_rewrite = apply_rewrite(_model)
onnx.checker.check_model(_model_with_rewrite)