1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import annotations
import copy
import dataclasses
import numbers
import unittest
import warnings
from typing import Any, Collection, Iterable, Optional, Sequence
import numpy as np
import onnx
import onnx.backend.test.case.node as node_test
import onnxruntime as ort
from onnx.onnx_cpp2py_export import checker
from onnxruntime.capi.onnxruntime_pybind11_state import (
Fail,
InvalidArgument,
InvalidGraph,
)
import onnxscript
from onnxscript._internal import utils
@dataclasses.dataclass(repr=False, eq=False)
class FunctionTestParams:
function: onnxscript.OnnxFunction
input: list[Any] | dict[str, Any]
output: list[Any]
attrs: Optional[dict[str, Any]] = None
def _make_model_from_function_proto(
function_proto: onnx.FunctionProto,
function_opset_version: int,
input_value_infos: Sequence[onnx.ValueInfoProto],
output_value_infos: Sequence[onnx.ValueInfoProto],
*,
ir_version: int,
**attrs: Any,
) -> onnx.ModelProto:
"""Creates a model containing a single call to a given
function with input and output value_infos, etc.
Args:
function_proto: function proto
representing a single call
function_opset_version: function_proto's version
input_value_infos: function's input
output_value_infos: function's output
ir_version: IR version of the model
attrs: the attributes of the node for the function
Returns:
ModelProto
"""
input_names = [vi.name for vi in input_value_infos]
output_names = [vi.name for vi in output_value_infos]
node = onnx.helper.make_node(
function_proto.name,
input_names,
output_names,
domain=function_proto.domain,
**attrs,
)
graph = onnx.helper.make_graph([node], "node_graph", input_value_infos, output_value_infos)
model_proto_opset: Iterable[onnx.OperatorSetIdProto] = function_proto.opset_import
if all(o.domain != function_proto.domain for o in model_proto_opset):
model_proto_opset = [
*model_proto_opset,
onnx.helper.make_opsetid(function_proto.domain, function_opset_version),
]
model = onnx.helper.make_model(
graph,
functions=[function_proto],
producer_name="onnxscript",
opset_imports=model_proto_opset,
ir_version=ir_version,
)
return model
class OnnxScriptTestCase(unittest.TestCase):
local_function_opset_version: int
atol: float
rtol: float
@classmethod
def setUpClass(cls):
# A function (and node) in a model tells its domain, not version.
# When building a model that consumes functions and nodes, model opset_imports
# indicate domains and versions of nodes and functions that are used.
# Function version number is needed for a runtime to run it without inlining.
# Before ONNX IR (or FunctionIR) being updated
# for FunctionProto to have version number we
# need to put a default version number here to workaround the problem.
cls.local_function_opset_version = 1
cls.atol = 1e-7
cls.rtol = 1e-7
try:
# experimental version
# pylint: disable=no-value-for-parameter
cls.all_test_cases = node_test.collect_testcases() # type: ignore[attr-defined,call-arg]
# pylint: enable=no-value-for-parameter
except TypeError:
# official version
cls.all_test_cases = node_test.collect_testcases(None) # type: ignore[attr-defined,arg-type]
def _create_model_from_param(
self, param: FunctionTestParams, onnx_case_model: onnx.ModelProto, *, ir_version: int
) -> onnx.ModelProto:
local_function_proto = param.function.function_ir.to_function_proto()
if not onnx_case_model:
input_names = [f"input_{i}" for i in range(len(param.input))]
output_names = [f"output_{i}" for i in range(len(param.output))]
input_value_infos = utils.values_to_value_infos(zip(input_names, param.input))
elif len(onnx_case_model.graph.input) == len(local_function_proto.input) and all(
i != "" for i in onnx_case_model.graph.input
):
# we want to create a model that onnx_test_runner
# can run with onnx test case data
input_names = [i.name for i in onnx_case_model.graph.input]
output_names = [o.name for o in onnx_case_model.graph.output]
input_value_infos = utils.values_to_value_infos(zip(input_names, param.input))
else:
# in an onnx test case, an optional input with missing input data
# is dropped, if it is a tailing input, and otherwise the input is named "".
# a models from script keeps all optional inputs,
# to run script model with onnx test data, we need to map input test data
# to the corresponding script model input.
# take Clip test case for example:
# clip function input is like: ["input", "min2", "max2"]
# (1) when min is missing, the test_case_model is ["x", "", "max"]
# in this case we want to create a model with input being: ["x", "min", "max"]
# input feed: {x: ?, min: None, max: ?} # ? is a np.array
# (2) when max is missing, the test_case_model is ["x", "min"]
# in this case we want to create a model with input being: ["x", "min", "max2"]
# input feed: {x: ?, min: ?, max: None} # ? is a np.array
# there is another issue: when input data is missing,
# there is not way from the onnx test case's model and feed to get TypeProto
# in order to build a model.
# we have to resolve the TypeProto from script function.
local_function_model_proto = param.function.function_ir.to_model_proto(
ir_version=ir_version
)
input_value_infos = []
for i, input in enumerate(local_function_model_proto.graph.input):
vi = copy.deepcopy(input)
if (
i < len(onnx_case_model.graph.node[0].input)
and onnx_case_model.graph.node[0].input[i] != ""
):
vi.name = onnx_case_model.graph.node[0].input[i]
else:
vi.name = input.name
input_value_infos.append(vi)
output_names = [o.name for o in onnx_case_model.graph.output]
output_value_infos = utils.values_to_value_infos(zip(output_names, param.output))
return _make_model_from_function_proto(
local_function_proto,
self.local_function_opset_version,
input_value_infos,
output_value_infos,
ir_version=ir_version,
**(param.attrs or {}),
)
def _filter_test_case_by_op_type(self, op_type):
test_cases = [
case
for case in self.all_test_cases # type: ignore[attr-defined]
if (
case.kind == "node"
and len(case.model.graph.node) == 1
and case.model.graph.node[0].op_type == op_type
)
]
return test_cases
def run_converter_test(
self,
param: FunctionTestParams,
onnx_case_model: Optional[onnx.ModelProto] = None,
*,
ir_version: int = 9,
rtol: Optional[float] = None,
):
# FIXME(justinchuby): Defaulting to ir_version 9 because ONNX Runtime supports
# up to IR version 9 as of 4/2/2024. We should have a better mechanism to
# guard against ONNX version change while preserving the ability to test
# the latest ONNX IR version.
if onnx_case_model:
model = self._create_model_from_param(
param, onnx_case_model, ir_version=ir_version
)
else:
model = param.function.function_ir.to_model_proto(
producer_name="call_clip", ir_version=ir_version
)
try:
onnx.checker.check_model(model)
except checker.ValidationError as e:
if "Field 'shape' of 'type' is required but missing" in str(
e
) or "Field 'shape' of type is required but missing" in str(e):
# input or output shapes are missing because the function
# was defined with FLOAT[...].
warnings.warn(str(e), stacklevel=1)
else:
raise AssertionError("Verification of model failed.") from e
if isinstance(param.input, dict):
input = param.input
else:
# onnx_case_model is provided with testing with onnx test cases.
if onnx_case_model:
input = {}
feed_index = 0
for i, model_input in enumerate(model.graph.input):
# take care of ["x", "", "max"] and ["x", "min"] cases
if (
feed_index < len(param.input)
and onnx_case_model.graph.node[0].input[i] != ""
):
input[model_input.name] = (
np.array(param.input[feed_index])
if isinstance(param.input[feed_index], numbers.Number)
else param.input[feed_index]
)
feed_index += 1
else:
input[model_input.name] = None
else:
input = {
vi.name: np.array(t) if isinstance(t, numbers.Number) else t
for vi, t in zip(model.graph.input, param.input)
}
try:
session = ort.InferenceSession(
model.SerializeToString(), providers=("CPUExecutionProvider",)
)
except (Fail, InvalidArgument, InvalidGraph) as e:
raise AssertionError(f"Unable to load model\n{model}") from e
# input['input_2'] = None
actual = session.run(None, input)
np.testing.assert_allclose(actual, param.output, rtol=rtol or self.rtol)
def run_eager_test(
self,
param: FunctionTestParams,
rtol: Optional[float] = None,
atol: Optional[float] = None,
):
actual = param.function(*param.input, **(param.attrs or {}))
np.testing.assert_allclose(
actual if isinstance(actual, list) else [actual],
param.output,
rtol=rtol or self.rtol,
atol=atol or self.atol,
)
def run_onnx_test(
self,
function: onnxscript.OnnxFunction,
rtol: Optional[float] = None,
atol: Optional[float] = None,
skip_eager_test: bool = False,
skip_test_names: Optional[Collection[str]] = None,
**attrs: Any,
) -> None:
"""Run ONNX test cases with an onnxscript.OnnxFunction.
The function should have test cases in ONNX repo.
For example: in onnx/test/case/node.
Test case models and data are used to do converter and eager mode test.
Args:
function: the function to be tested.
rtol: relative tolerance. Defaults to None.
atol: absolute tolerance. Defaults to None.
skip_eager_test: not to run eager test if True.
skip_test_names: to skip these tests.
attrs: default attributes of the function node.
"""
if skip_test_names is None:
skip_test_names = set()
else:
skip_test_names = set(skip_test_names)
cases = self._filter_test_case_by_op_type(function.function_ir.name)
for case in cases:
if len(case.model.graph.node) != 1:
raise ValueError(
"run_onnx_test only \
tests models with one operator node."
)
if case.name not in skip_test_names:
test_case_attrs = {
a.name: onnx.helper.get_attribute_value(a)
for a in case.model.graph.node[0].attribute
}
test_case_attrs = {**attrs, **test_case_attrs}
for ds in case.data_sets:
param = FunctionTestParams(function, ds[0], ds[1], attrs=test_case_attrs)
self.run_converter_test(param, case.model)
if not skip_eager_test:
self.run_eager_test(param, rtol=rtol, atol=atol)
|