1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
# Test op correctness by comparing with PyTorch results using OpInfo
`OpInfo` is PyTorch's standard mechanism for composing test data for operators.
Read more about them on https://github.com/pytorch/pytorch/blob/ce4a097bf769d753712a1fd969b446c59e29d8b9/torch/testing/_internal/opinfo/core.py#L362.
## Usage
```bash
# All
python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py
# To run tests on a specific operator (e.g. torch.ceil):
python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k ceil
# To run tests on a nn operator (e.g. nn.functional.scaled_dot_product_attention):
python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k nn_functional_scaled_dot_product_attention
```
### Environment variables
1. Set environment variable `CATCH_ORT_SEGFAULT=1` to catch segmentation faults
in onnxruntime by running the inference sessions in a separate process.
2. Set `CREATE_REPRODUCTION_REPORT=1` to create markdown files for reproduction of errors. E.g.
```bash
CREATE_REPRODUCTION_REPORT=1 python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k div_mode_int
```
## How to add a new operator test
See _usage_ in [`ops_test_data.py`](./ops_test_data.py)
## How to add custom OpInfo tests
Sometimes, there is no existing OpInfo that fits our need to test an operator. You want to create a custom OpInfo for it.
Follow the steps below to create new OpInfo tests:
1. Use the implementation for `ops.aten.slice_scatter` as a reference (https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/extra_opinfo.py#L2412-L2418) to declare an OpInfo in [`extra_opinfo.py`](./extra_opinfo.py)
```py
opinfo_core.OpInfo(
"ops.aten.slice_scatter",
aten_name="slice_scatter",
dtypes=common_dtype.all_types_and(torch.bfloat16, torch.half, torch.bool),
sample_inputs_func=sample_inputs_slice_scatter,
supports_out=False,
),
```
- The first argument should be the operator name under the `torch.ops` namespace. For example, if you want to test the `prims.var` op, then put `"ops.prims.var"`. It should almost always start with `ops.`.
- Follow existing examples to specify the `dtypes` you want to test the op on.
- Specify `op=` if the target operator is not the same as the OpInfo name (first arg). For example https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/extra_opinfo.py#L2065-L2068.
```py
opinfo_core.OpInfo(
"ops.aten.bernoulli.p_deterministic",
op=torch.ops.aten.bernoulli.p,
```
The op is `torch.ops.aten.bernoulli.p`, which is different from the name `ops.aten.bernoulli.p_deterministic`. OpInfo names need to be globally unique in a test suite. When `op` is not specified, it will look for the op in `torch.` using its name.
2. Implement the `sample_inputs_func`. (Ref: https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/extra_opinfo.py#L1242-L1268)
1. Copy the function and decide what the input shapes should be. Use `make_arg` to generate a torch.Tensor. Alternatively you could also use `torch.tensor` to generate the tensor yourself. Be sure to double check the dtype and device. Finally yield each test cases with
```py
yield opinfo_core.SampleInput(input, args=(...), kwargs={...})
```
`input` is the first arg. The rest of the args are in `args`.
3. Enable the test case in [`ops_test_data.py`](./ops_test_data.py)
1. Add a `TorchLibOpInfo` entry to the `TESTED_TORCHLIB_OPS` list. (For example https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/ops_test_data.py#L2116)
```py
TorchLibOpInfo("ops.aten.slice_scatter", core_ops.aten_slice_scatter)
```
You can additionally specify dtype tolerance (https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/ops_test_data.py#L539) or conditional skips (https://github.com/microsoft/onnxscript/blob/e67335101e4a06b8cc98cb4129935a9af5062c77/tests/function_libs/torch_lib/ops_test_data.py#L586-L590).
Now that the test is added, you may run the test like mentioned above. Set `CREATE_REPRODUCTION_REPORT=1` to get markdown reports and view failing input combinations should any test case fails.
|