1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import annotations
import difflib
import pathlib
import platform
import sys
import time
import traceback
from typing import Any, Mapping
import numpy as np
import onnx
import onnxruntime as ort
import torch
_REPRODUCTION_TEMPLATE = '''\
import google.protobuf.text_format
import numpy as np
from numpy import array, float16, float32, float64, int32, int64
import onnx
import onnxruntime as ort
# Run n times
N = 1
onnx_model_text = """
{onnx_model_text}
"""
ort_inputs = {ort_inputs}
# Set up the inference session
session_options = ort.SessionOptions()
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
onnx_model = onnx.ModelProto()
google.protobuf.text_format.Parse(onnx_model_text, onnx_model)
# Uncomment this line to save the model to a file for examination
# onnx.save_model(onnx_model, "{short_test_name}.onnx")
onnx.checker.check_model(onnx_model)
session = ort.InferenceSession(onnx_model.SerializeToString(), session_options, providers=("CPUExecutionProvider",))
# Run the model
for _ in range(N):
ort_outputs = session.run(None, ort_inputs)
'''
_ISSUE_MARKDOWN_TEMPLATE = """
### Summary
ONNX Runtime raises `{error_text}` when executing test `{test_name}` in ONNX Script `TorchLib`.
To recreate this report, use
```bash
CREATE_REPRODUCTION_REPORT=1 python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k {short_test_name}
```
### To reproduce
```python
{reproduction_code}
```
### Full error stack
```
{error_stack}
```
### The ONNX model text for visualization
```
{onnx_model_textual_representation}
```
### Environment
```
{sys_info}
```
"""
_MISMATCH_MARKDOWN_TEMPLATE = """\
### Summary
The output of ONNX Runtime does not match that of PyTorch when executing test
`{test_name}`, `sample {sample_num}` in ONNX Script `TorchLib`.
To recreate this report, use
```bash
CREATE_REPRODUCTION_REPORT=1 python -m pytest onnxscript/tests/function_libs/torch_lib/ops_test.py -k {short_test_name}
```
### Inputs
Shapes: `{input_shapes}`
<details><summary>Details</summary>
<p>
```python
kwargs = {kwargs}
inputs = {inputs}
```
</p>
</details>
### Expected output
Shape: `{expected_shape}`
<details><summary>Details</summary>
<p>
```python
expected = {expected}
```
</p>
</details>
### Actual output
Shape: `{actual_shape}`
<details><summary>Details</summary>
<p>
```python
actual = {actual}
```
</p>
</details>
### Difference
<details><summary>Details</summary>
<p>
```diff
{diff}
```
</p>
</details>
### Full error stack
```
{error_stack}
```
"""
def create_reproduction_report(
test_name: str,
onnx_model: onnx.ModelProto,
ort_inputs: Mapping[str, Any],
error: Exception,
) -> None:
# NOTE: We choose to embed the ONNX model as a string in the report instead of
# saving it to a file because it is easier to share the report with others.
onnx_model_text = str(onnx_model)
with np.printoptions(threshold=sys.maxsize):
ort_inputs = dict(ort_inputs.items())
input_text = str(ort_inputs)
error_text = str(error)
error_stack = error_text + "\n" + "".join(traceback.format_tb(error.__traceback__))
sys_info = f"""\
OS: {platform.platform()}
Python version: {sys.version}
onnx=={onnx.__version__}
onnxruntime=={ort.__version__}
numpy=={np.__version__}
torch=={torch.__version__}"""
short_test_name = test_name.split(".")[-1]
reproduction_code = _REPRODUCTION_TEMPLATE.format(
onnx_model_text=onnx_model_text,
ort_inputs=input_text,
short_test_name=short_test_name,
)
onnx_model_textual_representation = onnx.printer.to_text(onnx_model)
markdown = _ISSUE_MARKDOWN_TEMPLATE.format(
error_text=error_text,
test_name=test_name,
short_test_name=short_test_name,
reproduction_code=reproduction_code,
error_stack=error_stack,
sys_info=sys_info,
onnx_model_textual_representation=onnx_model_textual_representation,
)
# Turn test name into a valid file name
markdown_file_name = f"{short_test_name.replace('/', '-').replace(':', '-')}-{str(time.time()).replace('.', '_')}.md"
markdown_file_path = save_error_report(markdown_file_name, markdown)
print(f"Created reproduction report at {markdown_file_path}")
def create_mismatch_report(
test_name: str,
sample_num: int,
inputs,
kwargs,
actual,
expected,
error: Exception,
) -> None:
torch.set_printoptions(threshold=sys.maxsize)
error_text = str(error)
error_stack = error_text + "\n" + "".join(traceback.format_tb(error.__traceback__))
short_test_name = test_name.split(".")[-1]
diff = difflib.unified_diff(
str(actual).splitlines(),
str(expected).splitlines(),
fromfile="actual",
tofile="expected",
lineterm="",
)
input_shapes = repr(
[
f"Tensor<{inp.shape}, dtype={inp.dtype}>" if isinstance(inp, torch.Tensor) else inp
for inp in inputs
]
)
markdown = _MISMATCH_MARKDOWN_TEMPLATE.format(
test_name=test_name,
short_test_name=short_test_name,
sample_num=sample_num,
input_shapes=input_shapes,
inputs=inputs,
kwargs=kwargs,
expected=expected,
expected_shape=expected.shape if isinstance(expected, torch.Tensor) else None,
actual=actual,
actual_shape=actual.shape if isinstance(actual, torch.Tensor) else None,
diff="\n".join(diff),
error_stack=error_stack,
)
markdown_file_name = f"mismatch-{short_test_name.replace('/', '-').replace(':', '-')}-{str(time.time()).replace('.', '_')}.md"
markdown_file_path = save_error_report(markdown_file_name, markdown)
print(f"Created reproduction report at {markdown_file_path}")
def save_error_report(file_name: str, text: str):
reports_dir = pathlib.Path("error_reports")
reports_dir.mkdir(parents=True, exist_ok=True)
file_path = reports_dir / file_name
with open(file_path, "w", encoding="utf-8") as f:
f.write(text)
return file_path
|