1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Common utils for testing operators."""
from __future__ import annotations
import contextlib
import copy
import dataclasses
import multiprocessing
import os
import pprint
import sys
import unittest
import warnings
from typing import (
Any,
Callable,
Collection,
Iterable,
Mapping,
Optional,
Sequence,
TypeVar,
)
import numpy as np
import onnx
import onnxruntime as ort
import onnxruntime.capi.onnxruntime_pybind11_state
import pytest
import torch
from torch.onnx._internal.exporter import _building, _tensors
from torch.testing._internal.opinfo import core as opinfo_core
import onnxscript
import onnxscript.evaluator
from onnxscript import ir
from onnxscript.function_libs.torch_lib.ops import common as common_ops
from tests.function_libs.torch_lib import error_reproduction
T = TypeVar("T")
# Convenience tuples for creating dtype lists when skipping or xfailing tests
BOOL_TYPES = (torch.bool,)
INT_TYPES = (
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.uint8,
)
FLOAT_TYPES = (
torch.float16,
torch.float32,
torch.float64,
)
TEST_OPSET_VERSION = 18
IS_MACOS = sys.platform.startswith("darwin")
IS_WINDOWS = os.name == "nt"
@dataclasses.dataclass
class DecorateMeta:
"""A dataclass for storing information about a test case to skip or xfail.
Adapted from functorch: functorch/test/common_utils.py
"""
op_name: str
variant_name: str
decorator: Callable[..., Any]
dtypes: Optional[Collection[torch.dtype]]
device_type: Optional[str]
reason: str
test_behavior: str
matcher: Optional[Callable[[Any], bool]] = None
enabled_if: bool = True
# The test_class_name to apply the decorator to. If None, the decorator is
# applied to all test classes.
test_class_name: Optional[str] = None
def xfail(
op_name: str,
variant_name: str = "",
*,
reason: str,
dtypes: Optional[Collection[torch.dtype]] = None,
device_type: Optional[str] = None,
matcher: Optional[Callable[[Any], Any]] = None,
enabled_if: bool = True,
test_class_name: Optional[str] = None,
) -> DecorateMeta:
"""Expects an OpInfo test to fail.
Args:
op_name: The name of the operator.
variant_name: Optional OpInfo variant_test_name.
reason: The reason for the failure.
dtypes: The dtypes to expect the failure.
device_type: Device type. E.g. "cpu", "cuda".
matcher: A function that matches the test sample input. It is used only when
the xfail is in the SKIP_XFAIL_SUBTESTS list.
enabled_if: Whether the xfail is enabled.
test_class_name: The test class name to apply the xfail to. If None, the
xfail is applied to all test classes.
"""
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.expectedFailure,
dtypes=dtypes,
device_type=device_type,
matcher=matcher,
reason=reason,
enabled_if=enabled_if,
test_class_name=test_class_name,
test_behavior="xfail",
)
def skip(
op_name: str,
variant_name: str = "",
*,
reason: str,
dtypes: Optional[Collection[torch.dtype]] = None,
device_type: Optional[str] = None,
matcher: Optional[Callable[[Any], Any]] = None,
enabled_if: bool = True,
test_class_name: Optional[str] = None,
) -> DecorateMeta:
"""Skips an OpInfo test.
Args:
op_name: The name of the operator.
variant_name: Optional OpInfo variant_test_name.
reason: The reason for skipping.
dtypes: The dtypes to skip.
device_type: Device type. E.g. "cpu", "cuda".
matcher: A function that matches the test sample input. It is used only when
the skip is in the SKIP_XFAIL_SUBTESTS list.
enabled_if: Whether the skip is enabled.
test_class_name: The test class name to apply the skip to. If None, the skip
is applied to all test classes.
"""
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.skip(f"Skip: {reason}"),
dtypes=dtypes,
device_type=device_type,
reason=reason,
matcher=matcher,
enabled_if=enabled_if,
test_class_name=test_class_name,
test_behavior="skip",
)
def add_decorate_info(
all_opinfos: Sequence[opinfo_core.OpInfo],
test_class_name: str,
base_test_name: str,
skip_or_xfails: Iterable[DecorateMeta],
) -> Callable[[T], T]:
"""Decorates OpInfo tests with decorators based on the skip_or_xfails list."""
ops_mapping = {(info.name, info.variant_test_name): info for info in all_opinfos}
for decorate_meta in skip_or_xfails:
opinfo = ops_mapping.get((decorate_meta.op_name, decorate_meta.variant_name))
if opinfo is None and not decorate_meta.enabled_if:
# If the OpInfo doesn't exist and it is not enabled, we skip the OpInfo
# because it could be an OpInfo that is in torch-nightly but not older versions.
continue
assert opinfo is not None, (
f"Couldn't find OpInfo for {decorate_meta}. Did you need to specify variant_name?"
)
decorators = list(opinfo.decorators)
new_decorator = opinfo_core.DecorateInfo(
decorate_meta.decorator,
decorate_meta.test_class_name or test_class_name,
base_test_name,
dtypes=decorate_meta.dtypes,
device_type=decorate_meta.device_type,
active_if=decorate_meta.enabled_if,
)
decorators.append(new_decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
def duplicate_opinfo(opinfos: list[opinfo_core.OpInfo], name: str, new_names: tuple[str, ...]):
"""Duplicate an opinfo in the opinfo database and give it a new name."""
duplicated = []
all_info_names = {opinfo.name for opinfo in opinfos}
for opinfo in opinfos:
if opinfo.name == name:
for new_name in new_names:
if new_name in all_info_names:
# NOTE: Avoid duplicating an opinfo that already exists in the database.
# New opinfos are expected to be added in torch-nightly.
warnings.warn(
f"OpInfo {new_name} already exists in the database.", stacklevel=1
)
continue
new_opinfo = copy.deepcopy(opinfo)
new_opinfo.name = new_name
duplicated.append(new_opinfo)
opinfos.extend(duplicated)
def duplicate_opinfo_for_prims(
opinfos: list[opinfo_core.OpInfo], name: str, prims_name: str | None = None
):
"""Duplicate an opinfo in the opinfo database for a prims op.
The function sets the new OpInfo to use the variation torch.ops.prims.
The new OpInfo will have the name "prims_{prims_name}" where `prims_name` is the
name of the prims op. If `prims_name` is None, it will be set to "prims_{name}".
Args:
opinfos: The list of opinfo_core.OpInfo to add the new opinfo to.
name: The name of the opinfo to duplicate.
prims_name: The name of the prims op. If None, it will be set to `name`.
"""
if prims_name is None:
prims_name = name
# The name of the new OpInfo
new_name = f"prims_{prims_name}"
all_info_names = {opinfo.name for opinfo in opinfos}
for opinfo in opinfos:
if opinfo.name == name:
if new_name in all_info_names:
# NOTE: Avoid duplicating an opinfo that already exists in the database.
warnings.warn(
f"OpInfo {new_name} already exists in the database.", stacklevel=1
)
continue
new_opinfo = copy.deepcopy(opinfo)
new_opinfo.name = new_name
new_opinfo.op = getattr(torch.ops.prims, prims_name)
opinfos.append(new_opinfo)
return
raise RuntimeError(f"OpInfo '{name}' not found in the database.")
_TORCH_TYPE_TO_ONNX = {
torch.bool: onnx.TensorProto.BOOL,
torch.uint8: onnx.TensorProto.UINT8,
torch.int8: onnx.TensorProto.INT8,
torch.int16: onnx.TensorProto.INT16,
torch.int32: onnx.TensorProto.INT32,
torch.int64: onnx.TensorProto.INT64,
torch.float16: onnx.TensorProto.FLOAT16,
torch.float32: onnx.TensorProto.FLOAT,
torch.float64: onnx.TensorProto.DOUBLE,
torch.complex64: onnx.TensorProto.COMPLEX64,
torch.complex128: onnx.TensorProto.COMPLEX128,
torch.bfloat16: onnx.TensorProto.BFLOAT16,
}
_TORCH_DTYPE_TO_ONNX: dict[torch.dtype, ir.DataType] = {
torch.bfloat16: ir.DataType.BFLOAT16,
torch.bool: ir.DataType.BOOL,
torch.complex128: ir.DataType.COMPLEX128,
torch.complex64: ir.DataType.COMPLEX64,
torch.float16: ir.DataType.FLOAT16,
torch.float32: ir.DataType.FLOAT,
torch.float64: ir.DataType.DOUBLE,
torch.float8_e4m3fn: ir.DataType.FLOAT8E4M3FN,
torch.float8_e4m3fnuz: ir.DataType.FLOAT8E4M3FNUZ,
torch.float8_e5m2: ir.DataType.FLOAT8E5M2,
torch.float8_e5m2fnuz: ir.DataType.FLOAT8E5M2FNUZ,
torch.int16: ir.DataType.INT16,
torch.int32: ir.DataType.INT32,
torch.int64: ir.DataType.INT64,
torch.int8: ir.DataType.INT8,
torch.uint8: ir.DataType.UINT8,
torch.uint16: ir.DataType.UINT16,
torch.uint32: ir.DataType.UINT32,
torch.uint64: ir.DataType.UINT64,
}
def convert_tensor_to_numpy(input: Any) -> Any:
if isinstance(input, torch.Tensor):
if torch.is_complex(input):
# from complex to real representation
input = torch.view_as_real(input)
return input.detach().cpu().numpy()
if isinstance(input, complex):
return torch.view_as_real(torch.tensor(input)).detach().cpu().numpy()
if isinstance(input, list):
if len(input) == 0:
return np.array((), dtype=np.int64)
if any(isinstance(x, torch.Tensor) for x in input):
# The list can be Optional[Tensor], e.g. [None, Tensor, None] etc.
return [convert_tensor_to_numpy(x) for x in input]
if isinstance(input[0], bool):
return np.array(input, dtype=np.bool_)
# Just a sequence of numbers
if isinstance(input[0], int):
return np.array(input, dtype=np.int64)
if isinstance(input[0], float):
return np.array(input)
return input
def convert_kwargs_for_onnx(kwargs: dict[str, Any]) -> dict[str, Any]:
"""Converts kwargs to be compatible with ONNX Runtime."""
new_kwargs = {}
for key, value in kwargs.items():
if key == "device":
continue
if key == "dtype":
value = _TORCH_TYPE_TO_ONNX[value]
if isinstance(value, torch.Tensor):
value = np.array(value.cpu())
new_kwargs[key] = value
return new_kwargs
class OrtAbortedError(RuntimeError):
"""ONNX Runtime Aborted."""
def _ort_session_run(serialized_model: bytes, ort_inputs: Mapping[str, Any]):
"""Run a model with ONNX Runtime."""
# Disable all ORT optimizations
session_options = onnxruntime.SessionOptions()
session_options.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
)
session = ort.InferenceSession(
serialized_model, session_options, providers=("CPUExecutionProvider",)
)
return session.run(None, ort_inputs)
def _ort_session_run_return_dict(
serialized_model: bytes, ort_inputs: Mapping[str, Any], return_dict
) -> None:
"""Run a model with ONNX Runtime and store the results in return_dict."""
try:
return_dict["results"] = _ort_session_run(serialized_model, ort_inputs)
return_dict["error"] = None
except Exception as e: # pylint: disable=broad-except
return_dict["results"] = None
return_dict["error"] = e
def _safe_ort_session_run(serialized_model: bytes, ort_inputs: Mapping[str, Any]):
"""Run a model with ONNX Runtime in a separate process.
Args:
serialized_model: Serialized ONNX model proto.
ort_inputs: Inputs to the model.
Returns:
The inference result.
Raises:
OrtAbortedError if the process did not execute successfully.
"""
manager = multiprocessing.Manager()
return_dict = manager.dict()
process = multiprocessing.Process(
target=_ort_session_run_return_dict, args=(serialized_model, ort_inputs, return_dict)
)
process.start()
process.join()
process.close()
if not return_dict:
raise OrtAbortedError()
if return_dict["error"] is not None:
raise return_dict["error"]
return return_dict["results"]
def _format_model_and_input_information(onnx_model, inputs):
return f"Inputs:\n{pprint.pformat(inputs)}\nModel:\n{onnx.printer.to_text(onnx_model)}"
TORCH_DTYPE_TO_ONNX_STRING = {
torch.bool: "tensor(bool)",
torch.uint8: "tensor(uint8)",
torch.int8: "tensor(int8)",
torch.int16: "tensor(int16)",
torch.int32: "tensor(int32)",
torch.int64: "tensor(int64)",
torch.float16: "tensor(float16)",
torch.float32: "tensor(float)",
torch.float64: "tensor(double)",
torch.complex64: "tensor(complex64)",
torch.complex128: "tensor(complex128)",
torch.bfloat16: "tensor(bfloat16)",
}
def add_torchlib_common_imports(model: ir.Model) -> None:
"""Hack to add torchlib common imports to the model."""
model.opset_imports["pkg.onnxscript.torch_lib.common"] = 1
rank_func = ir.serde.deserialize_function(common_ops.Rank.to_function_proto())
is_scalar_func = ir.serde.deserialize_function(common_ops.IsScalar.to_function_proto())
model.functions[rank_func.identifier()] = rank_func
model.functions[is_scalar_func.identifier()] = is_scalar_func
def dtype_op_schema_compatible(dtype: torch.dtype, schema: onnx.defs.OpSchema) -> bool:
"""Checks if the dtype is compatible with the schema.
When a dtype is "compatible" with the schema, it means we can use the dtype
to create sample inputs by OpInfo to test the ONNX function and expect outputs to match.
Args:
dtype: The torch dtype used to create sample inputs by OpInfo.
schema: The ONNX schema of the function.
Returns:
True if the dtype is compatible with the schema.
"""
if not schema.inputs:
# If there are no inputs, we can't check compatibility. Assume it is compatible.
# e.g. aten_randn has only attributes.
return True
if schema.inputs[0].name not in {"self", "input"}:
# If the name of the first input is not "self" or "input",
# it is usually an input that is not of the same type as the output.
# We assume support in this case.
#
# For example, `aten_ones(size: IntType, dtype: int = FLOAT.dtype)`
# has the first input as `size`, which is an integer, but it can support
# any dtype.
return True
# Otherwise we check the type constraints of the first input.
# For example, when dtype=torch.float32, and the op being tested has the schema
# ```
# OpSchema(
# name='aten_abs',
# domain='pkg.onnxscript.torch_lib',
# since_version=1,
# doc='abs(Tensor self) -> Tensor',
# type_constraints=[OpSchema.TypeConstraintParam(type_param_str='TReal', allowed_type_strs=['tensor(float)', 'tensor(int8)', 'tensor(int16)', 'tensor(int32)', 'tensor(int64)', 'tensor(float16)', 'tensor(double)', 'tensor(bfloat16)'], description='')],
# inputs=[OpSchema.FormalParameter(name='self', type_str='TReal', description='', param_option=<FormalParameterOption.Single: 0>, is_homogeneous=True, min_arity=1, differentiation_category=<DifferentiationCategory.Unknown: 0>)],
# outputs=[OpSchema.FormalParameter(name='return_val', type_str='TReal', description='', param_option=<FormalParameterOption.Single: 0>, is_homogeneous=True, min_arity=1, differentiation_category=<DifferentiationCategory.Unknown: 0>)],
# attributes={}
# )
# ```
# we see the first input type is "TReal", corresponding to the type constraint
# with allowed types ['tensor(float)', 'tensor(int8)', 'tensor(int16)',
# 'tensor(int32)', 'tensor(int64)', 'tensor(float16)', 'tensor(double)',
# 'tensor(bfloat16)'].
# Since torch.float32 (tensor(float)) is in the allowed types, we return True.
first_input_type_name = schema.inputs[0].type_str
# Find the type constraint for the first input by matching the parameter name
first_input_type_constraint = next(
(x for x in schema.type_constraints if first_input_type_name in x.type_param_str),
None,
)
assert first_input_type_constraint is not None
allowed_type_strs = first_input_type_constraint.allowed_type_strs
# Here we consider seq(tensor(float)) compatible with tensor(float) as well
return any(TORCH_DTYPE_TO_ONNX_STRING[dtype] in type_str for type_str in allowed_type_strs)
def graph_executor(
test_name: str,
outputs: Sequence[Any],
) -> Callable[[Callable[..., Any], tuple[Any], dict[str, Any]], None]:
"""Eagerly executes a function."""
def _capture_graph_and_evaluate_torch_script_evaluator(function: Callable, args, kwargs):
"""Captures the graph of a function and evaluates it using TorchScriptEvaluator."""
# Initialize the ONNX graph
graph = ir.Graph(
(),
(),
nodes=(),
opset_imports={
"": 18,
"pkg.torch.onnx": 1,
"pkg.onnxscript.torch_lib.common": 1,
"pkg.onnxscript.torch_lib": 1,
},
name="main_graph",
)
opset = onnxscript.opset18
tracer = _building.OpRecorder(opset, {})
ort_inputs = {}
onnxscript_args: list[Any] = []
onnxscript_kwargs = {}
for i, arg in enumerate(args):
if isinstance(arg, np.ndarray):
input_name = f"input_{i}"
input = _tensors.SymbolicTensor(
opset=opset,
name=input_name,
shape=ir.Shape(arg.shape),
type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[torch.tensor(arg).dtype]),
)
graph.inputs.append(input)
onnxscript_args.append(input)
ort_inputs[input_name] = arg
elif isinstance(arg, (list, tuple)):
# str is also a sequence but we do not want to treat it as a tensor
sequence_input = []
for j, subarg in enumerate(arg):
if isinstance(subarg, np.ndarray):
input_name = f"input_{i}_{j}"
tensor = torch.tensor(subarg)
input = _tensors.SymbolicTensor(
opset=opset,
name=input_name,
shape=ir.Shape(tensor.shape),
type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[tensor.dtype]),
)
graph.inputs.append(input)
sequence_input.append(input)
ort_inputs[input_name] = subarg
else:
# Include non-numpy inputs as-is
# For example, it could be a None value that we want to keep
sequence_input.append(subarg)
onnxscript_args.append(sequence_input)
else:
onnxscript_args.append(arg)
for key, value in kwargs.items():
if isinstance(value, np.ndarray):
input = _tensors.SymbolicTensor(
opset=opset,
name=key,
shape=ir.Shape(torch.tensor(value).shape),
type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[torch.tensor(value).dtype]),
)
graph.inputs.append(input)
ort_inputs[key] = value
onnxscript_kwargs[key] = input
else:
onnxscript_kwargs[key] = value
with onnxscript.evaluator.default_as(tracer):
symbolic_outputs = function(*onnxscript_args, **onnxscript_kwargs)
if not isinstance(symbolic_outputs, Sequence):
symbolic_outputs = (symbolic_outputs,)
# We need to set the size of the output tensors for the ONNX model to be valid
for output, symbolic_output in zip(outputs, symbolic_outputs):
if isinstance(output, Sequence):
# Output is a sequence
elem_dtype = _TORCH_DTYPE_TO_ONNX[output[0].dtype]
symbolic_output.type = ir.SequenceType(ir.TensorType(elem_dtype))
continue
output = (
output
if isinstance(output, torch.Tensor)
else torch.tensor(output, device="cpu")
)
symbolic_output.shape = ir.Shape(output.shape)
symbolic_output.dtype = _TORCH_DTYPE_TO_ONNX[output.dtype]
graph.outputs.extend(symbolic_outputs)
graph.extend(tracer.nodes)
onnx_model = ir.Model(graph, ir_version=10, producer_name="torch_test")
for identifier, onnxscript_function in tracer.functions.items():
if identifier in onnx_model.functions:
continue
if isinstance(onnxscript_function, ir.Function):
ir_function = onnxscript_function
else:
# TODO: Get IR function directly when onnxscript is updated
proto = onnxscript_function.to_function_proto()
ir_function = ir.serde.deserialize_function(proto)
onnx_model.functions[identifier] = ir_function
add_torchlib_common_imports(onnx_model)
# Make sure the model is valid
model_proto = ir.to_proto(onnx_model)
try:
onnx.checker.check_model(model_proto, full_check=True)
except (onnx.checker.ValidationError, onnx.shape_inference.InferenceError) as e:
raise AssertionError(f"ONNX model is invalid. Model:\n{onnx_model}") from e
model_proto = onnx.shape_inference.infer_shapes(model_proto, data_prop=True)
try:
if (
os.environ.get("CATCH_ORT_SEGFAULT") == "1"
or os.environ.get("CREATE_REPRODUCTION_REPORT") == "1"
):
# Use an individual process to run ONNX Runtime to catch segfaults
return _safe_ort_session_run(model_proto.SerializeToString(), ort_inputs)
return _ort_session_run(model_proto.SerializeToString(), ort_inputs)
except (
# pylint: disable=c-extension-no-member
onnxruntime.capi.onnxruntime_pybind11_state.Fail,
onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException,
onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument,
onnxruntime.capi.onnxruntime_pybind11_state.InvalidGraph,
onnxruntime.capi.onnxruntime_pybind11_state.NotImplemented,
# pylint: enable=c-extension-no-member
) as e:
if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
error_reproduction.create_reproduction_report(
test_name, model_proto, ort_inputs, e
)
raise RuntimeError(
"ONNX Runtime failed to evaluate:\n"
+ _format_model_and_input_information(model_proto, ort_inputs)
) from e
except OrtAbortedError as e:
if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
# Save the model and inputs to a file for reproduction
error_reproduction.create_reproduction_report(
test_name, model_proto, ort_inputs, e
)
raise OrtAbortedError(
"ONNX Runtime aborted:\n"
+ _format_model_and_input_information(model_proto, ort_inputs)
) from e
except Exception as e:
if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
error_reproduction.create_reproduction_report(
test_name, model_proto, ort_inputs, e
)
raise
return _capture_graph_and_evaluate_torch_script_evaluator
def eager_executor(
test_name: str,
outputs,
) -> Callable[[Callable[..., Any], tuple[Any], dict[str, Any]], None]:
"""Eagerly executes a function."""
del test_name # Unused
del outputs # Unused
def executor(function, args, kwargs):
return function(*args, **kwargs)
return executor
@contextlib.contextmanager
def normal_xfail_skip_test_behaviors(
test_behavior: Optional[str] = None, reason: Optional[str] = None
):
"""This context manager is used to handle the different behaviors of xfail and skip.
Args:
test_behavior (optional[str]): From DecorateMeta name, can be 'skip', 'xfail', or None.
reason (optional[str]): The reason for the failure or skip.
Raises:
e: Any exception raised by the test case if it's not an expected failure.
"""
# We need to skip as soon as possible, as SegFault might also be a case.
if test_behavior == "skip":
pytest.skip(reason=reason)
try:
yield
# We could use `except (AssertionError, RuntimeError, ...) as e:`, but it needs
# to go over all test cases to find the right exception type.
except Exception: # pylint: disable=broad-exception-caught
if test_behavior is None:
raise
if test_behavior == "xfail":
pytest.xfail(reason=reason)
else:
if test_behavior == "xfail":
pytest.fail("Test unexpectedly passed")
|