File: ops_test_common.py

package info (click to toggle)
onnxscript 0.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 12,384 kB
  • sloc: python: 75,957; sh: 41; makefile: 6
file content (690 lines) | stat: -rw-r--r-- 26,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Common utils for testing operators."""

from __future__ import annotations

import contextlib
import copy
import dataclasses
import multiprocessing
import os
import pprint
import sys
import unittest
import warnings
from typing import (
    Any,
    Callable,
    Collection,
    Iterable,
    Mapping,
    Optional,
    Sequence,
    TypeVar,
)

import numpy as np
import onnx
import onnxruntime as ort
import onnxruntime.capi.onnxruntime_pybind11_state
import pytest
import torch
from torch.onnx._internal.exporter import _building, _tensors
from torch.testing._internal.opinfo import core as opinfo_core

import onnxscript
import onnxscript.evaluator
from onnxscript import ir
from onnxscript.function_libs.torch_lib.ops import common as common_ops
from tests.function_libs.torch_lib import error_reproduction

T = TypeVar("T")


# Convenience tuples for creating dtype lists when skipping or xfailing tests

BOOL_TYPES = (torch.bool,)

INT_TYPES = (
    torch.int8,
    torch.int16,
    torch.int32,
    torch.int64,
    torch.uint8,
)

FLOAT_TYPES = (
    torch.float16,
    torch.float32,
    torch.float64,
)

TEST_OPSET_VERSION = 18
IS_MACOS = sys.platform.startswith("darwin")
IS_WINDOWS = os.name == "nt"


@dataclasses.dataclass
class DecorateMeta:
    """A dataclass for storing information about a test case to skip or xfail.

    Adapted from functorch: functorch/test/common_utils.py
    """

    op_name: str
    variant_name: str
    decorator: Callable[..., Any]
    dtypes: Optional[Collection[torch.dtype]]
    device_type: Optional[str]
    reason: str
    test_behavior: str
    matcher: Optional[Callable[[Any], bool]] = None
    enabled_if: bool = True
    # The test_class_name to apply the decorator to. If None, the decorator is
    # applied to all test classes.
    test_class_name: Optional[str] = None


def xfail(
    op_name: str,
    variant_name: str = "",
    *,
    reason: str,
    dtypes: Optional[Collection[torch.dtype]] = None,
    device_type: Optional[str] = None,
    matcher: Optional[Callable[[Any], Any]] = None,
    enabled_if: bool = True,
    test_class_name: Optional[str] = None,
) -> DecorateMeta:
    """Expects an OpInfo test to fail.

    Args:
        op_name: The name of the operator.
        variant_name: Optional OpInfo variant_test_name.
        reason: The reason for the failure.
        dtypes: The dtypes to expect the failure.
        device_type: Device type. E.g. "cpu", "cuda".
        matcher: A function that matches the test sample input. It is used only when
            the xfail is in the SKIP_XFAIL_SUBTESTS list.
        enabled_if: Whether the xfail is enabled.
        test_class_name: The test class name to apply the xfail to. If None, the
            xfail is applied to all test classes.
    """
    return DecorateMeta(
        op_name=op_name,
        variant_name=variant_name,
        decorator=unittest.expectedFailure,
        dtypes=dtypes,
        device_type=device_type,
        matcher=matcher,
        reason=reason,
        enabled_if=enabled_if,
        test_class_name=test_class_name,
        test_behavior="xfail",
    )


def skip(
    op_name: str,
    variant_name: str = "",
    *,
    reason: str,
    dtypes: Optional[Collection[torch.dtype]] = None,
    device_type: Optional[str] = None,
    matcher: Optional[Callable[[Any], Any]] = None,
    enabled_if: bool = True,
    test_class_name: Optional[str] = None,
) -> DecorateMeta:
    """Skips an OpInfo test.

    Args:
        op_name: The name of the operator.
        variant_name: Optional OpInfo variant_test_name.
        reason: The reason for skipping.
        dtypes: The dtypes to skip.
        device_type: Device type. E.g. "cpu", "cuda".
        matcher: A function that matches the test sample input. It is used only when
            the skip is in the SKIP_XFAIL_SUBTESTS list.
        enabled_if: Whether the skip is enabled.
        test_class_name: The test class name to apply the skip to. If None, the skip
            is applied to all test classes.
    """
    return DecorateMeta(
        op_name=op_name,
        variant_name=variant_name,
        decorator=unittest.skip(f"Skip: {reason}"),
        dtypes=dtypes,
        device_type=device_type,
        reason=reason,
        matcher=matcher,
        enabled_if=enabled_if,
        test_class_name=test_class_name,
        test_behavior="skip",
    )


def add_decorate_info(
    all_opinfos: Sequence[opinfo_core.OpInfo],
    test_class_name: str,
    base_test_name: str,
    skip_or_xfails: Iterable[DecorateMeta],
) -> Callable[[T], T]:
    """Decorates OpInfo tests with decorators based on the skip_or_xfails list."""
    ops_mapping = {(info.name, info.variant_test_name): info for info in all_opinfos}
    for decorate_meta in skip_or_xfails:
        opinfo = ops_mapping.get((decorate_meta.op_name, decorate_meta.variant_name))
        if opinfo is None and not decorate_meta.enabled_if:
            # If the OpInfo doesn't exist and it is not enabled, we skip the OpInfo
            # because it could be an OpInfo that is in torch-nightly but not older versions.
            continue
        assert opinfo is not None, (
            f"Couldn't find OpInfo for {decorate_meta}. Did you need to specify variant_name?"
        )
        decorators = list(opinfo.decorators)
        new_decorator = opinfo_core.DecorateInfo(
            decorate_meta.decorator,
            decorate_meta.test_class_name or test_class_name,
            base_test_name,
            dtypes=decorate_meta.dtypes,
            device_type=decorate_meta.device_type,
            active_if=decorate_meta.enabled_if,
        )
        decorators.append(new_decorator)
        opinfo.decorators = tuple(decorators)

    # This decorator doesn't modify fn in any way
    def wrapped(fn):
        return fn

    return wrapped


def duplicate_opinfo(opinfos: list[opinfo_core.OpInfo], name: str, new_names: tuple[str, ...]):
    """Duplicate an opinfo in the opinfo database and give it a new name."""
    duplicated = []
    all_info_names = {opinfo.name for opinfo in opinfos}
    for opinfo in opinfos:
        if opinfo.name == name:
            for new_name in new_names:
                if new_name in all_info_names:
                    # NOTE: Avoid duplicating an opinfo that already exists in the database.
                    # New opinfos are expected to be added in torch-nightly.
                    warnings.warn(
                        f"OpInfo {new_name} already exists in the database.", stacklevel=1
                    )
                    continue
                new_opinfo = copy.deepcopy(opinfo)
                new_opinfo.name = new_name
                duplicated.append(new_opinfo)
    opinfos.extend(duplicated)


def duplicate_opinfo_for_prims(
    opinfos: list[opinfo_core.OpInfo], name: str, prims_name: str | None = None
):
    """Duplicate an opinfo in the opinfo database for a prims op.

    The function sets the new OpInfo to use the variation torch.ops.prims.
    The new OpInfo will have the name "prims_{prims_name}" where `prims_name` is the
    name of the prims op. If `prims_name` is None, it will be set to "prims_{name}".

    Args:
        opinfos: The list of opinfo_core.OpInfo to add the new opinfo to.
        name: The name of the opinfo to duplicate.
        prims_name: The name of the prims op. If None, it will be set to `name`.
    """
    if prims_name is None:
        prims_name = name
    # The name of the new OpInfo
    new_name = f"prims_{prims_name}"
    all_info_names = {opinfo.name for opinfo in opinfos}
    for opinfo in opinfos:
        if opinfo.name == name:
            if new_name in all_info_names:
                # NOTE: Avoid duplicating an opinfo that already exists in the database.
                warnings.warn(
                    f"OpInfo {new_name} already exists in the database.", stacklevel=1
                )
                continue
            new_opinfo = copy.deepcopy(opinfo)
            new_opinfo.name = new_name
            new_opinfo.op = getattr(torch.ops.prims, prims_name)
            opinfos.append(new_opinfo)
            return
    raise RuntimeError(f"OpInfo '{name}' not found in the database.")


_TORCH_TYPE_TO_ONNX = {
    torch.bool: onnx.TensorProto.BOOL,
    torch.uint8: onnx.TensorProto.UINT8,
    torch.int8: onnx.TensorProto.INT8,
    torch.int16: onnx.TensorProto.INT16,
    torch.int32: onnx.TensorProto.INT32,
    torch.int64: onnx.TensorProto.INT64,
    torch.float16: onnx.TensorProto.FLOAT16,
    torch.float32: onnx.TensorProto.FLOAT,
    torch.float64: onnx.TensorProto.DOUBLE,
    torch.complex64: onnx.TensorProto.COMPLEX64,
    torch.complex128: onnx.TensorProto.COMPLEX128,
    torch.bfloat16: onnx.TensorProto.BFLOAT16,
}
_TORCH_DTYPE_TO_ONNX: dict[torch.dtype, ir.DataType] = {
    torch.bfloat16: ir.DataType.BFLOAT16,
    torch.bool: ir.DataType.BOOL,
    torch.complex128: ir.DataType.COMPLEX128,
    torch.complex64: ir.DataType.COMPLEX64,
    torch.float16: ir.DataType.FLOAT16,
    torch.float32: ir.DataType.FLOAT,
    torch.float64: ir.DataType.DOUBLE,
    torch.float8_e4m3fn: ir.DataType.FLOAT8E4M3FN,
    torch.float8_e4m3fnuz: ir.DataType.FLOAT8E4M3FNUZ,
    torch.float8_e5m2: ir.DataType.FLOAT8E5M2,
    torch.float8_e5m2fnuz: ir.DataType.FLOAT8E5M2FNUZ,
    torch.int16: ir.DataType.INT16,
    torch.int32: ir.DataType.INT32,
    torch.int64: ir.DataType.INT64,
    torch.int8: ir.DataType.INT8,
    torch.uint8: ir.DataType.UINT8,
    torch.uint16: ir.DataType.UINT16,
    torch.uint32: ir.DataType.UINT32,
    torch.uint64: ir.DataType.UINT64,
}


def convert_tensor_to_numpy(input: Any) -> Any:
    if isinstance(input, torch.Tensor):
        if torch.is_complex(input):
            # from complex to real representation
            input = torch.view_as_real(input)
        return input.detach().cpu().numpy()
    if isinstance(input, complex):
        return torch.view_as_real(torch.tensor(input)).detach().cpu().numpy()
    if isinstance(input, list):
        if len(input) == 0:
            return np.array((), dtype=np.int64)
        if any(isinstance(x, torch.Tensor) for x in input):
            # The list can be Optional[Tensor], e.g. [None, Tensor, None] etc.
            return [convert_tensor_to_numpy(x) for x in input]
        if isinstance(input[0], bool):
            return np.array(input, dtype=np.bool_)

        # Just a sequence of numbers
        if isinstance(input[0], int):
            return np.array(input, dtype=np.int64)
        if isinstance(input[0], float):
            return np.array(input)

    return input


def convert_kwargs_for_onnx(kwargs: dict[str, Any]) -> dict[str, Any]:
    """Converts kwargs to be compatible with ONNX Runtime."""
    new_kwargs = {}
    for key, value in kwargs.items():
        if key == "device":
            continue
        if key == "dtype":
            value = _TORCH_TYPE_TO_ONNX[value]
        if isinstance(value, torch.Tensor):
            value = np.array(value.cpu())
        new_kwargs[key] = value
    return new_kwargs


class OrtAbortedError(RuntimeError):
    """ONNX Runtime Aborted."""


def _ort_session_run(serialized_model: bytes, ort_inputs: Mapping[str, Any]):
    """Run a model with ONNX Runtime."""

    # Disable all ORT optimizations
    session_options = onnxruntime.SessionOptions()
    session_options.graph_optimization_level = (
        onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
    )
    session = ort.InferenceSession(
        serialized_model, session_options, providers=("CPUExecutionProvider",)
    )
    return session.run(None, ort_inputs)


def _ort_session_run_return_dict(
    serialized_model: bytes, ort_inputs: Mapping[str, Any], return_dict
) -> None:
    """Run a model with ONNX Runtime and store the results in return_dict."""

    try:
        return_dict["results"] = _ort_session_run(serialized_model, ort_inputs)
        return_dict["error"] = None
    except Exception as e:  # pylint: disable=broad-except
        return_dict["results"] = None
        return_dict["error"] = e


def _safe_ort_session_run(serialized_model: bytes, ort_inputs: Mapping[str, Any]):
    """Run a model with ONNX Runtime in a separate process.

    Args:
        serialized_model: Serialized ONNX model proto.
        ort_inputs: Inputs to the model.

    Returns:
        The inference result.

    Raises:
        OrtAbortedError if the process did not execute successfully.
    """
    manager = multiprocessing.Manager()
    return_dict = manager.dict()
    process = multiprocessing.Process(
        target=_ort_session_run_return_dict, args=(serialized_model, ort_inputs, return_dict)
    )
    process.start()
    process.join()
    process.close()
    if not return_dict:
        raise OrtAbortedError()
    if return_dict["error"] is not None:
        raise return_dict["error"]
    return return_dict["results"]


def _format_model_and_input_information(onnx_model, inputs):
    return f"Inputs:\n{pprint.pformat(inputs)}\nModel:\n{onnx.printer.to_text(onnx_model)}"


TORCH_DTYPE_TO_ONNX_STRING = {
    torch.bool: "tensor(bool)",
    torch.uint8: "tensor(uint8)",
    torch.int8: "tensor(int8)",
    torch.int16: "tensor(int16)",
    torch.int32: "tensor(int32)",
    torch.int64: "tensor(int64)",
    torch.float16: "tensor(float16)",
    torch.float32: "tensor(float)",
    torch.float64: "tensor(double)",
    torch.complex64: "tensor(complex64)",
    torch.complex128: "tensor(complex128)",
    torch.bfloat16: "tensor(bfloat16)",
}


def add_torchlib_common_imports(model: ir.Model) -> None:
    """Hack to add torchlib common imports to the model."""

    model.opset_imports["pkg.onnxscript.torch_lib.common"] = 1
    rank_func = ir.serde.deserialize_function(common_ops.Rank.to_function_proto())
    is_scalar_func = ir.serde.deserialize_function(common_ops.IsScalar.to_function_proto())
    model.functions[rank_func.identifier()] = rank_func
    model.functions[is_scalar_func.identifier()] = is_scalar_func


def dtype_op_schema_compatible(dtype: torch.dtype, schema: onnx.defs.OpSchema) -> bool:
    """Checks if the dtype is compatible with the schema.

    When a dtype is "compatible" with the schema, it means we can use the dtype
    to create sample inputs by OpInfo to test the ONNX function and expect outputs to match.

    Args:
        dtype: The torch dtype used to create sample inputs by OpInfo.
        schema: The ONNX schema of the function.

    Returns:
        True if the dtype is compatible with the schema.
    """
    if not schema.inputs:
        # If there are no inputs, we can't check compatibility. Assume it is compatible.
        # e.g. aten_randn has only attributes.
        return True
    if schema.inputs[0].name not in {"self", "input"}:
        # If the name of the first input is not "self" or "input",
        # it is usually an input that is not of the same type as the output.
        # We assume support in this case.
        #
        # For example, `aten_ones(size: IntType, dtype: int = FLOAT.dtype)`
        # has the first input as `size`, which is an integer, but it can support
        # any dtype.
        return True

    # Otherwise we check the type constraints of the first input.
    # For example, when dtype=torch.float32, and the op being tested has the schema
    # ```
    # OpSchema(
    #     name='aten_abs',
    #     domain='pkg.onnxscript.torch_lib',
    #     since_version=1,
    #     doc='abs(Tensor self) -> Tensor',
    #     type_constraints=[OpSchema.TypeConstraintParam(type_param_str='TReal', allowed_type_strs=['tensor(float)', 'tensor(int8)', 'tensor(int16)', 'tensor(int32)', 'tensor(int64)', 'tensor(float16)', 'tensor(double)', 'tensor(bfloat16)'], description='')],
    #     inputs=[OpSchema.FormalParameter(name='self', type_str='TReal', description='', param_option=<FormalParameterOption.Single: 0>, is_homogeneous=True, min_arity=1, differentiation_category=<DifferentiationCategory.Unknown: 0>)],
    #     outputs=[OpSchema.FormalParameter(name='return_val', type_str='TReal', description='', param_option=<FormalParameterOption.Single: 0>, is_homogeneous=True, min_arity=1, differentiation_category=<DifferentiationCategory.Unknown: 0>)],
    #     attributes={}
    # )
    # ```
    # we see the first input type is "TReal", corresponding to the type constraint
    # with allowed types ['tensor(float)', 'tensor(int8)', 'tensor(int16)',
    # 'tensor(int32)', 'tensor(int64)', 'tensor(float16)', 'tensor(double)',
    # 'tensor(bfloat16)'].
    # Since torch.float32 (tensor(float)) is in the allowed types, we return True.

    first_input_type_name = schema.inputs[0].type_str
    # Find the type constraint for the first input by matching the parameter name
    first_input_type_constraint = next(
        (x for x in schema.type_constraints if first_input_type_name in x.type_param_str),
        None,
    )
    assert first_input_type_constraint is not None
    allowed_type_strs = first_input_type_constraint.allowed_type_strs
    # Here we consider seq(tensor(float)) compatible with tensor(float) as well
    return any(TORCH_DTYPE_TO_ONNX_STRING[dtype] in type_str for type_str in allowed_type_strs)


def graph_executor(
    test_name: str,
    outputs: Sequence[Any],
) -> Callable[[Callable[..., Any], tuple[Any], dict[str, Any]], None]:
    """Eagerly executes a function."""

    def _capture_graph_and_evaluate_torch_script_evaluator(function: Callable, args, kwargs):
        """Captures the graph of a function and evaluates it using TorchScriptEvaluator."""

        # Initialize the ONNX graph
        graph = ir.Graph(
            (),
            (),
            nodes=(),
            opset_imports={
                "": 18,
                "pkg.torch.onnx": 1,
                "pkg.onnxscript.torch_lib.common": 1,
                "pkg.onnxscript.torch_lib": 1,
            },
            name="main_graph",
        )
        opset = onnxscript.opset18
        tracer = _building.OpRecorder(opset, {})
        ort_inputs = {}
        onnxscript_args: list[Any] = []
        onnxscript_kwargs = {}
        for i, arg in enumerate(args):
            if isinstance(arg, np.ndarray):
                input_name = f"input_{i}"
                input = _tensors.SymbolicTensor(
                    opset=opset,
                    name=input_name,
                    shape=ir.Shape(arg.shape),
                    type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[torch.tensor(arg).dtype]),
                )
                graph.inputs.append(input)
                onnxscript_args.append(input)
                ort_inputs[input_name] = arg
            elif isinstance(arg, (list, tuple)):
                # str is also a sequence but we do not want to treat it as a tensor
                sequence_input = []
                for j, subarg in enumerate(arg):
                    if isinstance(subarg, np.ndarray):
                        input_name = f"input_{i}_{j}"
                        tensor = torch.tensor(subarg)
                        input = _tensors.SymbolicTensor(
                            opset=opset,
                            name=input_name,
                            shape=ir.Shape(tensor.shape),
                            type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[tensor.dtype]),
                        )
                        graph.inputs.append(input)
                        sequence_input.append(input)
                        ort_inputs[input_name] = subarg
                    else:
                        # Include non-numpy inputs as-is
                        # For example, it could be a None value that we want to keep
                        sequence_input.append(subarg)
                onnxscript_args.append(sequence_input)
            else:
                onnxscript_args.append(arg)
        for key, value in kwargs.items():
            if isinstance(value, np.ndarray):
                input = _tensors.SymbolicTensor(
                    opset=opset,
                    name=key,
                    shape=ir.Shape(torch.tensor(value).shape),
                    type=ir.TensorType(_TORCH_DTYPE_TO_ONNX[torch.tensor(value).dtype]),
                )
                graph.inputs.append(input)
                ort_inputs[key] = value
                onnxscript_kwargs[key] = input
            else:
                onnxscript_kwargs[key] = value

        with onnxscript.evaluator.default_as(tracer):
            symbolic_outputs = function(*onnxscript_args, **onnxscript_kwargs)
        if not isinstance(symbolic_outputs, Sequence):
            symbolic_outputs = (symbolic_outputs,)

        # We need to set the size of the output tensors for the ONNX model to be valid
        for output, symbolic_output in zip(outputs, symbolic_outputs):
            if isinstance(output, Sequence):
                # Output is a sequence
                elem_dtype = _TORCH_DTYPE_TO_ONNX[output[0].dtype]
                symbolic_output.type = ir.SequenceType(ir.TensorType(elem_dtype))
                continue
            output = (
                output
                if isinstance(output, torch.Tensor)
                else torch.tensor(output, device="cpu")
            )
            symbolic_output.shape = ir.Shape(output.shape)
            symbolic_output.dtype = _TORCH_DTYPE_TO_ONNX[output.dtype]

        graph.outputs.extend(symbolic_outputs)
        graph.extend(tracer.nodes)
        onnx_model = ir.Model(graph, ir_version=10, producer_name="torch_test")
        for identifier, onnxscript_function in tracer.functions.items():
            if identifier in onnx_model.functions:
                continue
            if isinstance(onnxscript_function, ir.Function):
                ir_function = onnxscript_function
            else:
                # TODO: Get IR function directly when onnxscript is updated
                proto = onnxscript_function.to_function_proto()
                ir_function = ir.serde.deserialize_function(proto)
            onnx_model.functions[identifier] = ir_function
        add_torchlib_common_imports(onnx_model)
        # Make sure the model is valid
        model_proto = ir.to_proto(onnx_model)
        try:
            onnx.checker.check_model(model_proto, full_check=True)
        except (onnx.checker.ValidationError, onnx.shape_inference.InferenceError) as e:
            raise AssertionError(f"ONNX model is invalid. Model:\n{onnx_model}") from e
        model_proto = onnx.shape_inference.infer_shapes(model_proto, data_prop=True)
        try:
            if (
                os.environ.get("CATCH_ORT_SEGFAULT") == "1"
                or os.environ.get("CREATE_REPRODUCTION_REPORT") == "1"
            ):
                # Use an individual process to run ONNX Runtime to catch segfaults
                return _safe_ort_session_run(model_proto.SerializeToString(), ort_inputs)

            return _ort_session_run(model_proto.SerializeToString(), ort_inputs)
        except (
            # pylint: disable=c-extension-no-member
            onnxruntime.capi.onnxruntime_pybind11_state.Fail,
            onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException,
            onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument,
            onnxruntime.capi.onnxruntime_pybind11_state.InvalidGraph,
            onnxruntime.capi.onnxruntime_pybind11_state.NotImplemented,
            # pylint: enable=c-extension-no-member
        ) as e:
            if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
                error_reproduction.create_reproduction_report(
                    test_name, model_proto, ort_inputs, e
                )
            raise RuntimeError(
                "ONNX Runtime failed to evaluate:\n"
                + _format_model_and_input_information(model_proto, ort_inputs)
            ) from e
        except OrtAbortedError as e:
            if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
                # Save the model and inputs to a file for reproduction
                error_reproduction.create_reproduction_report(
                    test_name, model_proto, ort_inputs, e
                )
            raise OrtAbortedError(
                "ONNX Runtime aborted:\n"
                + _format_model_and_input_information(model_proto, ort_inputs)
            ) from e
        except Exception as e:
            if os.environ.get("CREATE_REPRODUCTION_REPORT") == "1":
                error_reproduction.create_reproduction_report(
                    test_name, model_proto, ort_inputs, e
                )
            raise

    return _capture_graph_and_evaluate_torch_script_evaluator


def eager_executor(
    test_name: str,
    outputs,
) -> Callable[[Callable[..., Any], tuple[Any], dict[str, Any]], None]:
    """Eagerly executes a function."""

    del test_name  # Unused
    del outputs  # Unused

    def executor(function, args, kwargs):
        return function(*args, **kwargs)

    return executor


@contextlib.contextmanager
def normal_xfail_skip_test_behaviors(
    test_behavior: Optional[str] = None, reason: Optional[str] = None
):
    """This context manager is used to handle the different behaviors of xfail and skip.

    Args:
        test_behavior (optional[str]): From DecorateMeta name, can be 'skip', 'xfail', or None.
        reason (optional[str]): The reason for the failure or skip.

    Raises:
        e: Any exception raised by the test case if it's not an expected failure.
    """

    # We need to skip as soon as possible, as SegFault might also be a case.
    if test_behavior == "skip":
        pytest.skip(reason=reason)

    try:
        yield
    # We could use `except (AssertionError, RuntimeError, ...) as e:`, but it needs
    # to go over all test cases to find the right exception type.
    except Exception:  # pylint: disable=broad-exception-caught
        if test_behavior is None:
            raise
        if test_behavior == "xfail":
            pytest.xfail(reason=reason)
    else:
        if test_behavior == "xfail":
            pytest.fail("Test unexpectedly passed")