1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
# SPDX-License-Identifier: Apache-2.0
import math
import numpy as np
from onnx import TensorProto
from onnx.helper import make_tensor
from onnxscript import script
from onnxscript.onnx_opset import opset15 as op
from onnxscript.onnx_types import FLOAT, INT64
PI = np.pi
TWO_PI = np.pi * 2
FOUR_PI = np.pi * 4
@script()
def hann_window(window_length):
"""Returns
:math:`\\omega_n = \\sin^2\\left( \\frac{\\pi n}{N-1} \\right)`
where *N* is the window length.
"""
N_minus_1 = op.Cast(window_length - 1, to=1)
ni = op.Cast(op.Range(0, window_length, 1), to=1)
pin = (ni * PI) / N_minus_1
sin = op.Sin(pin)
return sin * sin
@script()
def hamming_window(window_length, alpha, beta):
"""Returns
:math:`\\omega_n = \\alpha - \\beta \\cos \\left( \\frac{\\pi n}{N-1} \\right)`
where *N* is the window length.
Default values for torch: `alpha=0.54, beta=0.46`.
"""
N_minus_1 = op.Cast(window_length - 1, to=1)
ni = op.Cast(op.Range(0, window_length, 1), to=1)
pin = (ni * TWO_PI) / N_minus_1
cos = op.Cos(pin)
return alpha - cos * beta
@script()
def blackman_window(window_length):
"""Returns
:math:`\\omega_n = 0.42 - 0.5 \\cos \\left( \\frac{2\\pi n}{N-1} \\right) +
0.8 \\cos \\left( \\frac{4\\pi n}{N-1} \\right)`
where *N* is the window length.
"""
N_minus_1 = op.Cast(window_length - 1, to=1)
ni = op.Cast(op.Range(0, window_length, 1), to=1)
cos2 = op.Cos((ni * TWO_PI) / N_minus_1)
cos4 = op.Cos((ni * FOUR_PI) / N_minus_1)
return (0.42 - (cos2 * 0.5)) + (cos4 * 0.08)
@script()
def switch_axes(x: FLOAT[...], axis1: INT64[1], axis2: INT64[1]) -> FLOAT[...]:
"""Switches two axis. The function assumes `axis1 < axis2`.
Both axis1 and axis2 are assumed to be positive. Specifically, the convention
of using negative axes to count backwards from the end is not supported.
"""
zero = op.Constant(value=make_tensor("zero", TensorProto.INT64, [1], [0]))
one = op.Constant(value=make_tensor("one", TensorProto.INT64, [1], [1]))
shape = op.Shape(x)
n_dims = op.Shape(shape)
axis2_1 = axis2 - one
n_dims_1 = n_dims - one
# First into a 5D dimension tensor.
pre_axis1 = op.Slice(shape, zero, axis1, zero)
if axis1 == zero:
pre_axis1_size = op.Identity(one)
else:
pre_axis1_size = op.ReduceProd(pre_axis1)
between = op.Slice(shape, op.Add(axis1, one), axis2, zero)
if axis1 == axis2_1:
between_size = op.Identity(one)
else:
between_size = op.ReduceProd(between)
post_axis2 = op.Slice(shape, op.Add(axis2, one), n_dims, zero)
if axis2 == n_dims_1:
post_axis2_size = op.Identity(one)
else:
post_axis2_size = op.ReduceProd(post_axis2)
dim1_size = op.Slice(shape, axis1, op.Add(axis1, one), zero)
dim2 = op.Slice(shape, axis2, op.Add(axis2, one), zero)
new_shape = op.Concat(
pre_axis1_size,
dim1_size,
between_size,
dim2,
post_axis2_size,
axis=0,
)
reshaped = op.Reshape(x, new_shape)
# Transpose
transposed = op.Transpose(reshaped, perm=[0, 3, 2, 1, 4])
# Reshape into its final shape.
final_shape = op.Concat(pre_axis1, dim2, between, dim1_size, post_axis2, axis=0)
return op.Reshape(transposed, final_shape)
@script()
def dft_last_axis(
x: FLOAT[...],
fft_length: INT64[1],
onesided: bool = False,
inverse: bool = False,
normalize: bool = False,
) -> FLOAT[...]:
"""See PR https://github.com/onnx/onnx/pull/3741/.
*Part 1*
Computes the matrix:
:math:`\\left(\\exp\\left(\\frac{-2i\\pi nk}{K}\\right)\\right)_{nk}`
and builds two matrices, real part and imaginary part.
*Part 2*
Matrix multiplication. The fft axis is the last one.
It builds two matrices, real and imaginary parts for DFT.
*Part 3*
Part 2 merges the real and imaginary parts into one single matrix
where the last axis indicates whether it is the real or the imaginary part.
Args:
x: float tensor, the last dimension is the complex one, it has 1
or 2 elements, 1 if the tensor is real and does not have any
imaginary part, 2 if the tensor is complex
fft_length: length of the FFT
onesided: if True, returns a truncated result `[:fft_length//2]`
inverse: returns FFT or the inverse of FFT
normalize: normalizes the result
Returns:
tensor
"""
# Part 1
zero = op.Constant(value=make_tensor("zero", TensorProto.INT64, [1], [0]))
one = op.Constant(value=make_tensor("one", TensorProto.INT64, [1], [1]))
two = op.Constant(value=make_tensor("two", TensorProto.INT64, [1], [2]))
last = op.Constant(value=make_tensor("last", TensorProto.INT64, [1], [-1]))
range = op.Range(zero, fft_length, one) # fft_length or dim
range_float = op.Cast(range, to=1)
shape1 = op.Constant(value=make_tensor("shape1", TensorProto.INT64, [2], [-1, 1]))
n = op.Reshape(range_float, shape1)
shape2 = op.Constant(value=make_tensor("shape2", TensorProto.INT64, [2], [1, -1]))
k = op.Reshape(range_float, shape2)
if op.Cast(inverse, to=TensorProto.BOOL):
cst_2pi = op.Constant(
value=make_tensor("pi", TensorProto.FLOAT, [1], [math.tau])
) # 2pi
else:
cst_2pi = op.Constant(
value=make_tensor("pi", TensorProto.FLOAT, [1], [-math.tau])
) # -2pi
fft_length_float = op.Cast(fft_length, to=1)
p = (k / fft_length_float * cst_2pi) * n
cos_win = op.Cos(p)
sin_win = op.Sin(p)
# real or complex
last_dim = op.Shape(x, start=-1)
# Part 2
if last_dim == one:
# rfft: x is a float tensor
real_x = op.Squeeze(op.Slice(x, zero, one, last), last)
x_shape = op.Shape(real_x)
axis = op.Size(x_shape) - one
dim = op.Slice(x_shape, axis, axis + one)
if dim >= fft_length:
# fft_length is shorter, x is trimmed to that size
pad_x = op.Slice(real_x, zero, fft_length, last, one)
else:
if dim == fft_length:
# no padding
pad_x = op.Identity(real_x)
else:
# the matrix is completed with zeros
# operator Pad could be used too.
x_shape_but_last = op.Slice(op.Shape(real_x), zero, last, zero, one)
new_shape = op.Concat(x_shape_but_last, fft_length - dim, axis=0)
cst = op.ConstantOfShape(
new_shape, value=make_tensor("zerof", TensorProto.FLOAT, [1], [0])
)
pad_x = op.Concat(real_x, op.Cast(cst, to=1), axis=-1)
result_real = op.Unsqueeze(op.MatMul(pad_x, cos_win), zero)
result_imag = op.Unsqueeze(op.MatMul(pad_x, sin_win), zero)
else:
# fft: x is a complex tensor in a float tensor
# last dimension is the complex one
x_shape_c = op.Shape(x)
x_shape = op.Slice(x_shape_c, zero, last, last)
axis = op.Size(x_shape) - one
dim = op.Slice(x_shape, axis, axis + one)
real_x = op.Squeeze(op.Slice(x, zero, one, last), last)
imag_x = op.Squeeze(op.Slice(x, one, two, last), last)
if dim >= fft_length:
# fft_length is shorter, x is trimmed to that size
pad_r = op.Slice(real_x, zero, fft_length, last, one)
pad_i = op.Slice(imag_x, zero, fft_length, last, one)
else:
if dim == fft_length:
# no padding
pad_r = op.Identity(real_x)
pad_i = op.Identity(imag_x)
else:
# the matrix is completed with zeros
# operator Pad could be used too.
x_shape_but_last = op.Slice(op.Shape(real_x), zero, last, zero, one)
new_shape = op.Concat(x_shape_but_last, fft_length - dim, axis=0)
cst = op.ConstantOfShape(
new_shape, value=make_tensor("zerof", TensorProto.FLOAT, [1], [0])
)
pad_r = op.Concat(real_x, op.Cast(cst, to=1), axis=-1)
pad_i = op.Concat(imag_x, op.Cast(cst, to=1), axis=-1)
result_real = op.Unsqueeze(
op.Sub(op.MatMul(pad_r, cos_win), op.MatMul(pad_i, sin_win)), zero
)
result_imag = op.Unsqueeze(
op.Add(op.MatMul(pad_r, sin_win), op.MatMul(pad_i, cos_win)), zero
)
# final step, needs to move to first axis into the last position.
result = op.Concat(result_real, result_imag, axis=0)
n_dims = op.Size(op.Shape(result))
if op.Cast(onesided, to=TensorProto.BOOL):
half = op.Div(fft_length, two) + op.Mod(fft_length, two)
n_r_dims_1 = op.Sub(op.Shape(op.Shape(x)), one)
truncated = op.Slice(result, zero, half, n_r_dims_1)
else:
truncated = op.Identity(result)
if n_dims == one:
# This should not happen.
final = op.Identity(truncated)
else:
result_shape = op.Shape(truncated)
shape_cpl = op.Constant(
value=make_tensor("shape_cpl", TensorProto.INT64, [2], [2, -1])
)
reshaped_result = op.Reshape(truncated, shape_cpl)
transposed = op.Transpose(reshaped_result, perm=[1, 0])
other_dimensions = op.Slice(result_shape, one, op.Shape(result_shape), zero)
final_shape = op.Concat(other_dimensions, two, axis=0)
final = op.Reshape(transposed, final_shape)
# normalization is needed for idft.
if op.Cast(normalize, to=TensorProto.BOOL):
norm = op.Div(final, fft_length_float)
else:
norm = op.Identity(final)
return norm
@script()
def dft_inv(
x: FLOAT[...],
fft_length: INT64[1],
axis: INT64[1],
onesided: bool = False,
inverse: bool = False,
normalize: bool = False,
) -> FLOAT[...]:
"""Applies one dimension FFT.
The function moves the considered axis to the last position
calls dft_last_axis, and moves the axis to its original position.
"""
shape = op.Shape(x)
n_dims = op.Shape(shape)
last_dim = n_dims - 2
positive_axis = op.Where(axis < 0, axis + n_dims, axis)
if positive_axis == last_dim:
final = dft_last_axis(x, fft_length, onesided, inverse, normalize)
else:
xt = switch_axes(x, positive_axis, last_dim)
fft = dft_last_axis(xt, fft_length, onesided, inverse, normalize)
final = switch_axes(fft, positive_axis, last_dim)
return final
@script(default_opset=op)
def dft(
x: FLOAT[...],
fft_length: INT64[1],
axis: INT64[1],
inverse: bool = False,
onesided: bool = False,
) -> FLOAT[...]:
"""Applies one dimensional FFT.
The function moves the considered axis to the last position
calls dft_last_axis, and moves the axis to its original position.
"""
return dft_inv(x, fft_length, axis, onesided=onesided, inverse=inverse, normalize=inverse)
@script()
def stft(
x: FLOAT[...],
fft_length: INT64[1],
hop_length: INT64[1],
n_frames: INT64[1],
window: FLOAT["N"],
onesided: bool = False,
) -> FLOAT[...]:
"""Applies one dimensional FFT with window weights.
torch defines the number of frames as:
`n_frames = 1 + (len - n_fft) / hop_length`.
"""
one = op.Constant(value=make_tensor("one", TensorProto.INT64, [1], [1]))
mtwo = op.Constant(value=make_tensor("mtwo", TensorProto.INT64, [1], [-2]))
zero = op.Constant(value=make_tensor("zero", TensorProto.INT64, [1], [0]))
last_axis = op.Shape(op.Shape(x)) - one
axis = op.Constant(value=make_tensor("axis", TensorProto.INT64, [1], [-2]))
axis2 = op.Constant(value=make_tensor("axis2", TensorProto.INT64, [1], [-3]))
window_size = op.Shape(window)
# building frames
seq = op.SequenceEmpty(dtype=TensorProto.FLOAT)
nf = op.Squeeze(n_frames, zero)
for fs in range(nf):
fs64 = op.Cast(fs, to=7)
begin = fs64 * hop_length
end = begin + window_size
sliced_x = op.Slice(x, begin, end, axis)
# sliced_x may be smaller
new_dim = op.Shape(sliced_x, start=-2, end=-1)
missing = window_size - new_dim
new_shape = op.Concat(
op.Shape(sliced_x, start=0, end=-2),
missing,
op.Shape(sliced_x, start=-1),
axis=0,
)
cst = op.ConstantOfShape(
new_shape, value=make_tensor("zerof", TensorProto.FLOAT, [1], [0])
)
pad_sliced_x = op.Concat(sliced_x, op.Cast(cst, to=1), axis=-2)
# same size
un_sliced_x = op.Unsqueeze(pad_sliced_x, axis2)
seq = op.SequenceInsert(seq, un_sliced_x)
# concatenation
new_x = op.ConcatFromSequence(seq, axis=-3, new_axis=0)
# calling weighted dft with weights=window
shape_x = op.Shape(new_x)
shape_x_short = op.Slice(shape_x, zero, mtwo, zero)
shape_x_short_one = (shape_x_short * zero) + one
window_shape = op.Concat(shape_x_short_one, window_size, one, axis=0)
weights = op.Reshape(window, window_shape)
weighted_new_x = new_x * weights
result = dft(weighted_new_x, fft_length, last_axis, onesided, False)
# final transpose -3, -2
two = op.Constant(value=make_tensor("two", TensorProto.INT64, [1], [2]))
three = op.Constant(value=make_tensor("three", TensorProto.INT64, [1], [3]))
dim = op.Shape(op.Shape(result))
return switch_axes(result, dim - three, dim - two)
|