1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Fuction fusion unittest producer.
Takes in a full model, function keyword, and example inputs, produces unit model protos
that contains only a single node calling the target function proto.
- All initializers are lifted as model inputs.
- Example inputs and outputs are saved as test data for each unit model proto.
"""
from __future__ import annotations
import argparse
import itertools
import logging
import os
import sys
import numpy as np
import onnx
import onnx.inliner
import onnxruntime
from onnx import helper as onnx_helper
from onnx import numpy_helper
from onnxscript import _legacy_ir as ir
from onnxscript._legacy_ir import visitor
from onnxscript.utils import evaluation_utils, utils
logger = logging.getLogger(__name__)
# Copied from common.py from pytorch torchbench
def save_tensor_data(numpy_tensor, output_path: str):
proto_tensor = numpy_helper.from_array(numpy_tensor)
with open(output_path, "wb") as f:
f.write(proto_tensor.SerializeToString())
class FunctionToKeepVisitor(visitor.ProtoVisitorCore):
def __init__(self, function_keyword):
self.function_keyword = function_keyword
self.functions_to_keep = []
self.in_target_function = False
self._functions = {}
super().__init__()
def visit_function_node(self, node: onnx.NodeProto):
prev_in_target_function = self.in_target_function
function_id = ir.get_function_id_from_node(node)
function = self._functions[function_id]
if node.op_type.find(self.function_keyword) != -1:
self.functions_to_keep.append(function_id)
self.in_target_function = True
elif prev_in_target_function:
self.functions_to_keep.append(function_id)
for subnode in function.node:
self.visit_node(subnode)
self.in_target_function = prev_in_target_function
def process_node(self, node: onnx.NodeProto):
if visitor.is_local_function_node(node, self._functions):
return self.visit_function_node(node)
return None
def visit_model(self, model: onnx.ModelProto) -> None:
for function in model.functions:
self._functions[ir.get_function_id(function)] = function
super().visit_model(model)
class TargetFunctionMetaVisitor(visitor.ProtoVisitorCore):
def __init__(self, function_keyword):
self.function_keyword = function_keyword
# Map from (domain, name) to (actual_input_names, actual_output_names)
self.function_meta: dict[tuple[str, str], tuple[list[str], list[str]]] = {}
self._functions = {}
super().__init__()
def visit_function_node(self, node: onnx.NodeProto):
function = self._functions[ir.get_function_id_from_node(node)]
if node.op_type.find(self.function_keyword) != -1:
self.function_meta[(function.domain, function.name)] = (
node.input,
node.output,
)
for subnode in function.node:
self.visit_node(subnode)
def process_node(self, node: onnx.NodeProto):
if visitor.is_local_function_node(node, self._functions):
return self.visit_function_node(node)
return None
def visit_model(self, model: onnx.ModelProto) -> None:
for function in model.functions:
self._functions[ir.get_function_id(function)] = function
super().visit_model(model)
class FunctionProtoProducerWithData(visitor.ProtoVisitor):
"""Fuction fusion unittest producer.
Creates unit model proto for selected function, as well as example inputs and outputs.
Utilizes ORT fetch feature.
Steps as follows:
- Identify the target function, and all functions called within.
- Call onnx.inliner to inline all other functions.
- Identity inputs and outputs to target function calls, construct ort fetch.
- Run the model with ort fetch to receive example inputs and outputs.
- For each target function call, construct a unit model proto with example inputs and outputs from previous step.
"""
def __init__(self, function_keyword: str, model_path: str, output_dir: str):
self.function_keyword = function_keyword
self.model_path = model_path
self.output_dir = output_dir
self.output_model_basename = function_keyword
self._functions: dict[ir.FunctionId, onnx.FunctionProto] = {}
self._unit_model_protos: list[onnx.ModelProto] = []
self._unit_model_inputs = [] # type: ignore[var-annotated]
self._unit_model_outputs = [] # type: ignore[var-annotated]
# Example intermediate data values
self._named_values: dict[str, np.ndarray] = {}
super().__init__()
@property
def unit_model_protos(self) -> list[onnx.ModelProto]:
return self._unit_model_protos
@property
def unit_model_inputs(self):
return self._unit_model_inputs
@property
def unit_model_outputs(self):
return self._unit_model_outputs
def find_all_called_function_protos(
self, function: onnx.FunctionProto
) -> list[onnx.FunctionProto]:
result: dict[ir.FunctionId, onnx.FunctionProto] = {
ir.get_function_id(function): function
}
for node in function.node:
if visitor.is_local_function_node(node, self._functions):
sub_function = self._functions[ir.get_function_id_from_node(node)]
result.update(
{
ir.get_function_id(func): func
for func in self.find_all_called_function_protos(sub_function)
}
)
return result.values() # type: ignore[return-value]
def _generate_value_info_for_function_value(
self, value: str, function: onnx.FunctionProto
) -> onnx.ValueInfoProto | None:
value_ir = self.function_shape_env.lookup(function, value)
if value_ir is None:
return None
return self.function_shape_env.save_to_value_info(
value_ir, *ir.get_function_id(function)
)
def _generate_value_info_for_function_values(
self, function: onnx.FunctionProto
) -> list[onnx.ValueInfoProto]:
value_infos = []
values = {
*function.input,
*function.output,
*itertools.chain((*node.input, *node.output) for node in function.node),
}
for value in values:
value_info = self._generate_value_info_for_function_value(value, function)
if value_info is not None:
value_infos.append(value_info)
return value_infos
def create_unit_model_proto(
self,
function_proto: onnx.FunctionProto,
actual_input_value_infos: list[ir.Value | None],
actual_output_value_infos: list[ir.Value | None],
) -> onnx.ModelProto | None:
unit_model_proto = onnx.ModelProto()
unit_model_proto.ir_version = self._model_proto.ir_version
unit_model_proto.producer_name = self._model_proto.producer_name
unit_model_proto.producer_version = self._model_proto.producer_version
unit_model_proto.domain = self._model_proto.domain
unit_model_proto.model_version = self._model_proto.model_version
unit_model_proto.opset_import.extend(self._model_proto.opset_import)
graph_proto = unit_model_proto.graph
for actual_input_value_info, formal_input in zip(
actual_input_value_infos, function_proto.input
):
if actual_input_value_info is None:
logger.error(
"Value info for input %s is not found. Skip model proto creation for function %s::%s",
formal_input,
function_proto.domain,
function_proto.name,
)
return None
if actual_input_value_info.type is None:
logger.error(
"Value info for input %s has no type. Skip model proto creation for function %s::%s",
formal_input,
function_proto.domain,
function_proto.name,
)
value_info = onnx.ValueInfoProto()
value_info.name = actual_input_value_info.name
value_info.type.CopyFrom(actual_input_value_info.type)
graph_proto.input.append(value_info)
for actual_output_value_info, formal_output in zip(
actual_output_value_infos, function_proto.output
):
if actual_output_value_info is None:
logger.error(
"Value info for output %s is not found. Skip model proto creation for function %s::%s",
formal_output,
function_proto.domain,
function_proto.name,
)
return None
if actual_output_value_info.type is None:
logger.error(
"Value info for output %s has no type. Skip model proto creation for function %s::%s",
formal_output,
function_proto.domain,
function_proto.name,
)
value_info = onnx.ValueInfoProto()
value_info.name = actual_output_value_info.name
value_info.type.CopyFrom(actual_output_value_info.type)
graph_proto.output.append(value_info)
new_function_node = onnx.NodeProto()
new_function_node.op_type = function_proto.name
new_function_node.domain = function_proto.domain
new_function_node.input.extend([input.name for input in actual_input_value_infos]) # type: ignore[union-attr]
new_function_node.output.extend([output.name for output in actual_output_value_infos]) # type: ignore[union-attr]
# TODO: Producing function node attribute is not supported yet.
graph_proto.node.append(new_function_node)
called_function_protos = self.find_all_called_function_protos(function_proto)
for called_function_proto in called_function_protos:
graph_proto.value_info.extend(
self._generate_value_info_for_function_values(called_function_proto)
)
unit_model_proto.functions.extend(called_function_protos)
return unit_model_proto
def process_initializer(self, init: onnx.TensorProto):
self.bind(
init.name,
ir.Value(name=init.name, type=utils.get_initializer_type(init)),
)
def lookup(self, name: str) -> ir.Value | None:
"""Override unit model proto inputs & outputs value infos with value info derived from actual example data.
This step is required because onnx FunctionProto does not contain value info.
The experimental solution from exporter writes value infos under root GraphProto, and associate them with
FunctionProto by name mangling. This is lost during onnx.inliner because of the structural and value name
changes.
This step is not necessary once value info is natively supported in FunctionProto.
This step by design cannot support dynamic shape.
"""
if name in self._named_values:
return ir.Value(
name=name,
type=onnx_helper.make_tensor_type_proto(
onnx_helper.np_dtype_to_tensor_dtype(self._named_values[name].dtype),
self._named_values[name].shape,
),
)
return super().lookup(name)
def visit_model(self, model: onnx.ModelProto):
functions_to_keep_visitor = FunctionToKeepVisitor(self.function_keyword)
functions_to_keep_visitor.visit_model(model)
functions_to_keep = functions_to_keep_visitor.functions_to_keep
# TODO: bug report: IsScalar function inside if subgraph is not part of functions_to_keep.
# Yet it is also not inlined. But its function_proto is removed by inliner.
# To unblock us, we manually add it to functions_to_keep.
functions_to_keep.append(("pkg.onnxscript.torch_lib.common", "IsScalar"))
# TODO: Post ONNX 1.16, overload will be introduced.
functions_to_keep = [function_id[:2] for function_id in functions_to_keep]
inlined_model_proto = onnx.inliner.inline_selected_functions(
model, functions_to_keep, exclude=True
)
target_function_meta_visitor = TargetFunctionMetaVisitor(self.function_keyword)
target_function_meta_visitor.visit_model(inlined_model_proto)
target_function_meta = target_function_meta_visitor.function_meta
fetch_outputs = [] # type: ignore[var-annotated]
for inputs, outputs in target_function_meta.values():
fetch_outputs.extend((*inputs, *outputs))
fetch_output_value_infos = []
for fetch_output in fetch_outputs:
value_info = onnx.ValueInfoProto()
value_info.name = fetch_output
fetch_output_value_infos.append(value_info)
inlined_model_proto.graph.output.extend(fetch_output_value_infos)
inlined_model_proto = onnx.shape_inference.infer_shapes(inlined_model_proto)
self._model_proto = inlined_model_proto
model_path = self.model_path
model_dir = os.path.dirname(model_path)
inputs, _ = evaluation_utils.load_test_data( # type: ignore[assignment]
model_dir, [i.name for i in model.graph.input]
)
tmp_model_path = f"{model_dir}/tmp_model.onnx"
onnx.save(inlined_model_proto, tmp_model_path)
sess = onnxruntime.InferenceSession(
tmp_model_path, providers=["CUDAExecutionProvider"]
)
outputs = sess.run(fetch_outputs, inputs)
assert len(outputs) == len(fetch_outputs), (
f"Number of outputs mismatch. outputs: {len(outputs)}, fetch_outputs: {len(fetch_outputs)}"
)
self._named_values = dict(zip(fetch_outputs, outputs)) # type: ignore[arg-type]
for inputs, outputs in target_function_meta.values():
named_inputs = [(i, self._named_values[i]) for i in inputs]
named_outputs = [(o, self._named_values[o]) for o in outputs]
self._unit_model_inputs.append(named_inputs)
self._unit_model_outputs.append(named_outputs)
for function in inlined_model_proto.functions:
self._functions[ir.get_function_id(function)] = function
super().visit_model(inlined_model_proto)
def process_function(self, function: onnx.FunctionProto):
if function.name.find(self.function_keyword) == -1:
return
try:
actual_input_value_infos = [self.lookup(input) for input in function.input]
actual_output_value_infos = [self.lookup(output) for output in function.output]
except ValueError as e:
raise ValueError(
"Cannot create ModelProto unittest for function. "
f"Failed to find value info for function {function.domain}::{function.name}"
) from e
unit_model_proto = self.create_unit_model_proto(
function, actual_input_value_infos, actual_output_value_infos
)
if unit_model_proto is not None:
self._unit_model_protos.append(unit_model_proto)
def produce_function_proto_unittest(
model_path: str,
function_keyword: str,
output_dir: str,
) -> tuple[
list[onnx.ModelProto],
list[list[tuple[str, np.ndarray]]],
list[list[tuple[str, np.ndarray]]],
]:
model_proto = onnx.load(model_path, load_external_data=False)
# model_proto = optimizer.optimize(model_proto, onnx_shape_inference=False)
producer = FunctionProtoProducerWithData(
function_keyword,
model_path,
output_dir,
)
producer.visit_model(model_proto)
return (
producer.unit_model_protos,
producer.unit_model_inputs,
producer.unit_model_outputs,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", "--model_path", type=str)
parser.add_argument("--function", type=str)
parser.add_argument("--output-dir", "--output_dir", type=str)
parser.add_argument("--max-outputs", "--max_outputs", type=int, default=sys.maxsize)
parser.add_argument("--name", type=str)
args = parser.parse_args()
model_path = args.model_path
function = args.function
output_dir = args.output_dir
max_outputs = args.max_outputs
name = args.name
(
unit_model_protos,
named_inputs_list,
named_outputs_list,
) = produce_function_proto_unittest(model_path, function, output_dir)
for i, unit_model_proto in enumerate(unit_model_protos[:max_outputs]):
if logger.level <= logging.DEBUG:
logger.debug("unit model proto %d:", i)
# logger.debug(onnx.printer.to_text(unit_model_proto))
output_model_dir = f"{output_dir}/{name}_{i}/"
os.makedirs(output_model_dir, exist_ok=True)
onnx.save(unit_model_proto, f"{output_model_dir}/{name}_{i}.onnx")
# save test data
test_data_dir = f"{output_model_dir}/test_data_set_0/"
os.makedirs(test_data_dir, exist_ok=True)
named_inputs = named_inputs_list[i]
for j, (_, input) in enumerate(named_inputs):
save_tensor_data(input, f"{test_data_dir}/input_{j}.pb")
named_outputs = named_outputs_list[i]
for j, (_, output) in enumerate(named_outputs):
save_tensor_data(output, f"{test_data_dir}/output_{j}.pb")
print(
f"{len(unit_model_protos[:max_outputs])} unit model protos and test data are saved to {output_dir}."
)
if __name__ == "__main__":
# python tools/function_rewriter_testing/function_unittest_producer.py \
# --model_path tools/ort_rewriter_profiling/onnx_models/stable_diffusion_unet/dynamo/stable_diffusion_unet_dynamo.onnx \
# --function GEGLU --output-dir testdata/unittest_models/ --max_outputs 4 --name geglu_stable_diffusion_unet
main()
|