1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""Lite benchmark script comparing perf between different onnx model of the same torch model.
Folders are expected to be in the following format:
<model-dir>
├── dynamo
│ ├── <model_name>_dynamo.onnx
│ ├── test_data_set_0
├── torchscript
│ ├── <model_name>_torchscript.onnx
│ ├── test_data_set_0
├── dynamo_aot_optimize
│ ├── <model_name>_dynamo_aot_optimize.onnx
│ ├── test_data_set_0
├── dynamo_aot_inline_optimize
│ ├── <model_name>_dynamo_aot_inline_optimize.onnx
│ ├── test_data_set_0
"""
from __future__ import annotations
import argparse
import dataclasses
import json
import logging
import os
import pathlib
import re
import subprocess
import time
from typing import Callable
import numpy as np
import onnx
import onnxruntime
import torch
from onnxscript.utils import evaluation_utils
np.random.seed(0)
logger = logging.getLogger(__name__)
_TORCH_TO_NUMPY_DTYPE = {
torch.float16: np.float16,
torch.float32: np.float32,
torch.float64: np.float64,
torch.uint8: np.uint8,
torch.int8: np.int8,
torch.int16: np.int16,
torch.int32: np.int32,
torch.int64: np.longlong,
torch.bool: np.bool_,
}
def create_iobinding(
sess: onnxruntime.InferenceSession,
inputs: dict[str, np.ndarray],
expected_outputs: list[np.ndarray],
) -> tuple[onnxruntime.IOBinding, list[torch.Tensor], list[torch.Tensor]]:
iobindings = sess.io_binding()
bound_inputs = []
bound_outputs = []
for input_name, input in inputs.items():
cuda_tensor = torch.from_numpy(np.array(input)).cuda().contiguous()
bound_inputs.append(cuda_tensor)
device = cuda_tensor.device
logger.debug(
"binding input name %s to device %s %s, shape %s, dtype %s",
input_name,
device.type,
device.index,
cuda_tensor.size(),
_TORCH_TO_NUMPY_DTYPE[cuda_tensor.dtype],
)
iobindings.bind_input(
input_name,
device.type,
device.index,
_TORCH_TO_NUMPY_DTYPE[cuda_tensor.dtype],
cuda_tensor.size(),
cuda_tensor.data_ptr(),
)
for ort_output_meta, expected_output in zip(sess.get_outputs(), expected_outputs):
cuda_tensor = torch.empty_like(
torch.from_numpy(np.array(expected_output)).cuda()
).contiguous()
bound_outputs.append(cuda_tensor)
device = cuda_tensor.device
logger.debug(
"binding output name %s to device %s %s, shape %s, dtype %s",
ort_output_meta.name,
device.type,
device.index,
cuda_tensor.size(),
_TORCH_TO_NUMPY_DTYPE[cuda_tensor.dtype],
)
iobindings.bind_output(
ort_output_meta.name,
device.type,
device.index,
_TORCH_TO_NUMPY_DTYPE[cuda_tensor.dtype],
cuda_tensor.size(),
cuda_tensor.data_ptr(),
)
return iobindings, bound_inputs, bound_outputs
def create_timed_ort_run_callable(
sess: onnxruntime.InferenceSession,
inputs: dict[str, np.ndarray],
expected_outputs: list[np.ndarray],
provider: str,
) -> Callable[[], tuple[list[np.ndarray], float]]:
if provider == "CUDAExecutionProvider":
iobindings, _, bound_outputs = create_iobinding(sess, inputs, expected_outputs)
run_options = onnxruntime.RunOptions()
# run_options.only_execute_path_to_fetches = True
def run_ort_with_iobindings() -> tuple[list[np.ndarray], float]:
iobindings.synchronize_inputs()
run_start_time = time.perf_counter()
sess.run_with_iobinding(iobindings, run_options=run_options)
iobindings.synchronize_outputs()
run_end_time = time.perf_counter()
np_outputs = [output.cpu().numpy() for output in bound_outputs]
return np_outputs, run_end_time - run_start_time
return run_ort_with_iobindings
else:
def run_ort_directly() -> tuple[list[np.ndarray], float]:
run_start_time = time.perf_counter()
outputs = sess.run(None, inputs)
run_end_time = time.perf_counter()
return outputs, run_end_time - run_start_time
return run_ort_directly
def check_and_run_model(
model_path: str,
qual_model_name: str,
inputs: dict[str, np.ndarray],
expected_outputs: list[np.ndarray],
iterations: int,
device: str,
):
# onnx.shape_inference.infer_shapes(
# onnx_model, check_type=True, strict_mode=True, data_prop=True
# )
# onnx.checker.check_model(onnx_model, full_check=True)
provider = "CPUExecutionProvider" if device == "cpu" else "CUDAExecutionProvider"
logger.info("Running %s with %s", qual_model_name, provider)
try:
session_options = onnxruntime.SessionOptions()
# Debug mode: more logs, slower
# session_options.log_severity_level = 0 # everything
# session_options.log_verbosity_level = 4 # verbose
# session_options.enable_profiling = True
# Bench mode: no logs
session_options.log_verbosity_level = 0 # suppress
# NOTE: uncomment to save ort optimized model.
# TODO: make it an arg.
# session_options.optimized_model_filepath = (
# f"ort_{qual_model_name}.onnx"
# )
load_start_time = time.perf_counter()
sess = onnxruntime.InferenceSession(
model_path,
sess_options=session_options,
providers=[provider],
)
print(
f"Loading {qual_model_name} model took {time.perf_counter() - load_start_time} seconds."
)
input_names = [i.name for i in sess.get_inputs()]
assert set(input_names) == set(inputs.keys())
timed_ort_callable = create_timed_ort_run_callable(
sess, inputs, expected_outputs, provider
)
# warm-up
# outputs = sess.run(None, inputs)
timed_ort_callable()
# quick bench
total_time = 0
for _ in range(iterations):
outputs, run_time = timed_ort_callable()
total_time += run_time
print(f"Running {qual_model_name} model took {total_time / iterations} seconds.")
for output, expected_output in zip(outputs, expected_outputs):
np.testing.assert_allclose(output, expected_output, rtol=5e-1, atol=5e-1)
except Exception as e: # pylint: disable=broad-except
print(f"========== {qual_model_name} failed: {e}")
else:
print(f"========== {qual_model_name} passed")
@dataclasses.dataclass
class ORTAnalysis:
graph_transform_hits: dict[str, int] = dataclasses.field(default_factory=dict)
operator_ep_distribution: dict[str, int] = dataclasses.field(default_factory=dict)
def analyze_ort_logs(stderr_output: str) -> ORTAnalysis:
analysis = ORTAnalysis()
for line in stderr_output.split("\n"):
# Example:
# [I:onnxruntime:, graph_transformer.cc:15 Apply] GraphTransformer GeluFusion modified: 0 with status: OK
match = re.search(r"GraphTransformer (\w+) modified: 1 with status: OK", line)
if match:
graph_transformer = match.group(1)
analysis.graph_transform_hits[graph_transformer] = (
analysis.graph_transform_hits.get(graph_transformer, 0) + 1
)
# Example:
# [V:onnxruntime:, session_state.cc:1149 VerifyEachNodeIsAssignedToAnEp] All nodes placed on [CPUExecutionProvider]. Number of nodes: 25
match = re.search(r"All nodes placed on \[(\w+)\]. Number of nodes: (\d+)", line)
if match:
ep = match.group(1)
num_nodes = int(match.group(2))
analysis.operator_ep_distribution[ep] = (
analysis.operator_ep_distribution.get(ep, 0) + num_nodes
)
return analysis
def run_model(compiler_name: str, model_dir: str, iterations: int, device: str) -> None:
model_name = pathlib.Path(model_dir).stem
qual_model_name = f"{model_name}_{compiler_name}"
qual_model_dir = f"{model_dir}/{compiler_name}"
model_path = f"{qual_model_dir}/{model_name}_{compiler_name}.onnx"
model = onnx.load(model_path)
inputs, expected_outputs = evaluation_utils.load_test_data(
qual_model_dir, [i.name for i in model.graph.input]
)
check_and_run_model(
model_path, qual_model_name, inputs, expected_outputs, iterations, device
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--compiler",
default=None,
help="Which compiler produced onnx model to run. "
"By default None, which runs all models it can find under 'model-dir'.",
)
parser.add_argument(
"--model-dir",
"--model_dir",
type=str,
help="Path to onnx model directory.",
required=True,
)
parser.add_argument(
"--iteration", "-i", type=int, default=2, help="Number of iterations for bench."
)
parser.add_argument("--device", type=str, default="cpu", choices=["cpu", "cuda"])
parser.add_argument("--log-level", "--log_level", type=int, default=logging.INFO)
args = parser.parse_args()
compiler = args.compiler
iter_ = args.iteration
model_dir = args.model_dir
device = args.device
log_level = args.log_level
logging.basicConfig(level=log_level)
if not os.path.exists(".logs"):
os.makedirs(".logs")
if compiler is None:
compiler_model_folders = [
folder for folder in pathlib.Path(model_dir).iterdir() if folder.is_dir()
]
for compiler_model_folder in compiler_model_folders:
compiler_name = compiler_model_folder.stem
model_name = pathlib.Path(model_dir).stem
with open(
f".logs/stderr_{model_name}_{compiler_name}.log", "w", encoding="utf-8"
) as stderr_file:
# Capture stderr which contains ORT logs.
subprocess_args = [
"python",
"bench_model.py",
"--compiler",
compiler_name,
"--iteration",
str(iter_),
"--model-dir",
model_dir,
"--device",
device,
]
result = subprocess.run(
subprocess_args,
stderr=subprocess.PIPE,
check=False,
)
try:
result.check_returncode()
except subprocess.CalledProcessError:
print(f"========== {model_name} {compiler_name} failed")
print(result.stderr.decode())
raise
stderr_output = result.stderr.decode()
# Analyze ORT logs.
print(f"========== Analyzing {model_name} {compiler_name} ORT Metrics")
analysis = analyze_ort_logs(stderr_output)
print(json.dumps(dataclasses.asdict(analysis), indent=4))
stderr_file.write(f"========== {model_name} {compiler_name} ORT Logs\n")
stderr_file.write(stderr_output)
else:
run_model(compiler, model_dir, iter_, device)
if __name__ == "__main__":
main()
|