File: profile_analysis.py

package info (click to toggle)
onnxscript 0.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 12,384 kB
  • sloc: python: 75,957; sh: 41; makefile: 6
file content (296 lines) | stat: -rw-r--r-- 9,623 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""This script analyzes the profile file generated by onnxruntime/nsys profiling.

It creates an in memory report of the per operator duration profile and prints it out.
"""

from __future__ import annotations

import argparse
import dataclasses
import json
from typing import Callable

import tabulate

WARM_UP_ROUNDS = 1


@dataclasses.dataclass
class ProfileEntry:
    op_type: str
    entries: list[tuple[str, int]]  # Entries of (node_name, duration)

    def total_count(self, iteration: int = 1) -> int:
        return len(self.entries) / iteration

    def total_duration(self, iteration: int = 1) -> int:
        return sum(entry[1] for entry in self.entries) / iteration / 1000 / 1000


@dataclasses.dataclass
class ModelProfile:
    op_profiles: list[ProfileEntry]
    iteration: int
    model_name: str | None = None
    compiler_name: str | None = None
    _with_warmup: bool = True
    op_profiles_dict: dict[str, ProfileEntry] | None = dataclasses.field(init=False)

    def __post_init__(self):
        # Discard warmup rounds
        if self._with_warmup:
            for op_profile in self.op_profiles:
                op_profile.entries = op_profile.entries[
                    len(op_profile.entries)
                    // (WARM_UP_ROUNDS + self.iteration)
                    * WARM_UP_ROUNDS :
                ]
        sorted_op_profiles = sorted(
            self.op_profiles, key=lambda x: x.total_duration(), reverse=True
        )
        self.op_profiles_dict = {
            op_profile.op_type: op_profile for op_profile in sorted_op_profiles
        }

    def filter_op_profiles(self, op_types: set[str]) -> ModelProfile:
        """Return a new ModelProfile with only the op types in op_types."""
        return ModelProfile(
            [op_profile for op_profile in self.op_profiles if op_profile.op_type in op_types],
            self.iteration,
            self.model_name,
            self.compiler_name,
            _with_warmup=False,
        )

    def op_duration(self, op_type: str) -> float:
        return (
            self.op_profiles_dict[op_type].total_duration(self.iteration)
            if op_type in self.op_profiles_dict
            else 0
        )

    def op_count(self, op_type: str) -> int:
        return int(
            self.op_profiles_dict[op_type].total_count(self.iteration)
            if op_type in self.op_profiles_dict
            else 0
        )

    def total_op_count(self) -> int:
        return sum(op_profile.total_count(self.iteration) for op_profile in self.op_profiles)

    def total_duration(self) -> float:
        """Total duration of all ops in the model in ms."""
        return sum(
            op_profile.total_duration(self.iteration)
            for op_profile in self.op_profiles
            if not op_profile.op_type.startswith("Batch-")
        )

    @property
    def sorted_op_report(self) -> str:
        sorted_op_profiles = sorted(
            self.op_profiles, key=lambda x: x.total_duration(), reverse=True
        )
        return "\n".join(
            f"Node {op_profile.op_type} has {op_profile.total_count(self.iteration)} instances "
            f"and total duration {op_profile.total_duration(self.iteration)} ms"
            for op_profile in sorted_op_profiles
        )


def tabulate_diff(
    base_report: ModelProfile,
    comp_report: ModelProfile,
    additional_row_lambdas: list[tuple[str, Callable, Callable]] | None = None,
) -> str:
    base_compiler = base_report.compiler_name
    comp_compiler = comp_report.compiler_name

    base_compiler_count_header = f"{base_compiler} count"
    comp_compiler_count_header = f"{comp_compiler} count"
    base_compiler_perf_header = f"{base_compiler} perf (ms)"
    comp_compiler_perf_header = f"{comp_compiler} perf (ms)"

    def _diff(base, comp):
        return comp - base

    def _diff_percent(base, comp):
        return f"{(comp - base) / base * 100:.2f}%" if base and comp else "N/A"

    def _construct_tabulate_dict(
        op_type: str,
        base_count: int,
        comp_count: int,
        base_perf: float,
        comp_perf: float,
    ):
        return {
            "OpType": op_type,
            "Diff": _diff(base_perf, comp_perf),
            "Diff%": _diff_percent(base_perf, comp_perf),
            base_compiler_count_header: base_count,
            comp_compiler_count_header: comp_count,
            base_compiler_perf_header: base_perf,
            comp_compiler_perf_header: comp_perf,
        }

    # Every op type
    tabulate_data = sorted(
        [
            _construct_tabulate_dict(
                op_type,
                base_report.op_count(op_type),
                comp_report.op_count(op_type),
                base_report.op_duration(op_type),
                comp_report.op_duration(op_type),
            )
            for op_type in set(base_report.op_profiles_dict.keys())
            | set(comp_report.op_profiles_dict.keys())
            if not op_type.startswith("Batch-")
        ],
        key=lambda x: x["Diff"],
        reverse=True,
    )
    tabulate_data.append(
        _construct_tabulate_dict(
            "Total",
            base_report.total_op_count(),
            comp_report.total_op_count(),
            base_report.total_duration(),
            comp_report.total_duration(),
        )
    )
    if additional_row_lambdas:
        for name, count_lambda, duration_lambda in additional_row_lambdas:
            tabulate_data.append(
                _construct_tabulate_dict(
                    name,
                    count_lambda(base_report),
                    count_lambda(comp_report),
                    duration_lambda(base_report),
                    duration_lambda(comp_report),
                )
            )
    return tabulate.tabulate(tabulate_data, headers="keys", tablefmt="grid")


def analyze_profile(profile_path: str):
    with open(profile_path, encoding="utf-8") as f:
        profile = f.read()
    profile_json = json.loads(profile)
    report = {}
    for entry in profile_json:
        if entry.get("cat") != "Node" or not entry.get("dur"):
            continue
        op_type = entry["args"]["op_name"]
        report.setdefault(op_type, ProfileEntry(op_type, []))
        report[op_type].entries.append((entry["name"], entry["dur"]))

    sorted_node_report = sorted(report.values(), key=lambda x: x.total_duration, reverse=True)
    for node_report in sorted_node_report:
        print(
            f"Node {node_report.op_type} has {node_report.total_count()} instances and total duration {node_report.total_duration()} ms"
        )
    print(
        f"Total duration: {sum(node_report.total_duration() for node_report in sorted_node_report)} ms"
    )


def analyze_profile_nvtx(
    profile_path: str,
    iteration: int,
    model_name: str | None = None,
    compiler_name: str | None = None,
) -> ModelProfile:
    report = {}
    with open(profile_path, encoding="utf-8") as f:
        line = f.readline()

        while line:
            entry = json.loads(line)
            line = f.readline()

            if (event := entry.get("NvtxEvent")) is None:
                continue
            op_type = event["Text"].split(".")[0]
            report.setdefault(op_type, ProfileEntry(op_type, []))
            report[op_type].entries.append(
                (event["Text"], int(event["EndTimestamp"]) - int(event["Timestamp"]))
            )

    model_profile = ModelProfile(report.values(), iteration, model_name, compiler_name)

    print(model_profile.sorted_op_report)
    print(f"Total duration: {model_profile.total_duration()} ms")
    return model_profile


def compare_node_reports(
    base_report: ModelProfile,
    comp_report: ModelProfile,
):
    # Every op type
    print(tabulate_diff(base_report, comp_report))

    # Matmul family + Add
    matmul_core_op_types = {
        "MatMul",
        "Gemm",
        "FusedMatMul",
    }
    matmul_add_op_types = matmul_core_op_types | {"Add"}

    filtered_base_report = base_report.filter_op_profiles(matmul_add_op_types)
    filtered_comp_report = comp_report.filter_op_profiles(matmul_add_op_types)

    print(
        tabulate_diff(
            filtered_base_report,
            filtered_comp_report,
            additional_row_lambdas=[
                (
                    # Show count of core MatMul like ops, while include Add when counting total duration.
                    "Total MatMul like ops",
                    lambda report: sum(
                        report.op_count(op_type) for op_type in matmul_core_op_types
                    ),
                    lambda report: report.total_duration(),
                ),
            ],
        )
    )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--profile-path", "--profile_path", help="Path to profile file", required=True
    )
    parser.add_argument(
        "--type", help="Type of profile file", choices=["ortcpu", "nvtx"], required=True
    )
    parser.add_argument(
        "--iteration",
        required=True,
        help="Number of iterations for nvtx profile. Help remove warmup rounds.",
        type=int,
    )

    args = parser.parse_args()
    profile_path = args.profile_path
    type = args.type
    iteration = args.iteration

    if type == "ortcpu":
        analyze_profile(profile_path)
    elif type == "nvtx":
        analyze_profile_nvtx(profile_path, iteration)
    else:
        raise ValueError(f"Unknown profile type {type}")


if __name__ == "__main__":
    main()