1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
(* $Id: Integers.Mod,v 1.7 1999/09/02 13:08:11 acken Exp $ *)
MODULE Integers;
(*
Integers - Arbitrary precision integer operations.
Copyright (C) 1996 Computer Inspirations
This module is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This module is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Algorithms are from Knuth: "The Art Of Computer Programming",
Vol 2, section 4.3.1
*)
IMPORT BinaryRider;
CONST
B = 8000H; (* base (32768) for calculations *)
(* Log2B = 15; *) (* log2(B) *)
BR = B+0.0; (* real version *)
TYPE
Integer* = POINTER TO IntegerDesc;
IntegerDesc = ARRAY OF INTEGER;
(*
Internal integer representation:
I[0] - Sign (1 for positive, 0 for zero, -1 for negative)
I[1..n] - Unsigned integer number with 16-bits/entry
where I[1] is the most significant "digit"
*)
CONST
positive=1; negative=-1;
VAR
ZERO, ONE: Integer;
(***********************************************************)
(* Internal Operations on Integers *)
PROCEDURE New (n: LONGINT) : Integer;
VAR d: Integer; i: LONGINT;
BEGIN
NEW(d, n); d[0]:=positive;
FOR i:=1 TO n-1 DO d[i]:=0 END; (* clear number *)
RETURN d
END New;
PROCEDURE Copy (VAR s: ARRAY OF INTEGER; n: LONGINT) : Integer;
(* n is number of occupied elements in s, including the sign *)
VAR d: Integer; i, j: LONGINT;
BEGIN
IF n=0 THEN n:=LEN(s) END;
(* reduce the size of the number -- if needed *)
i:=1; WHILE (s[i]=0) & (i<n-1) DO INC(i) END;
DEC(i); DEC(n, i);
(* create a new number and copy contents *)
NEW(d, n); FOR j:=1 TO n-1 DO d[j]:=s[i+j] END;
d[0]:=s[0]; (* copy the sign *)
RETURN d
END Copy;
PROCEDURE Assign (VAR w, u : ARRAY OF INTEGER);
(* Pre: LEN(w)>= LEN(u); Post: w=u *)
VAR i, j, lw, lu: LONGINT;
BEGIN
lw:=LEN(w)-1; lu:=LEN(u)-1;
ASSERT(lw>=lu, 105);
j:=lw;
FOR i:=lu TO 1 BY -1 DO w[j]:=u[i]; DEC(j) END; (* w := u *)
FOR i:=j TO 1 BY -1 DO w[i]:=0 END; (* zero other digits *)
w[0]:=u[0] (* copy the sign *)
END Assign;
PROCEDURE Sub (x: ARRAY OF INTEGER; VAR y: ARRAY OF INTEGER) : Integer;
(* Pre: x>0, y>0, LEN(x)>=LEN(y); Post: z=x-y *)
VAR xt, yt, i, j, len, borrow: LONGINT;
BEGIN
len:=LEN(x)-1; j:=LEN(y)-1; borrow:=0;
FOR i:= len TO 1 BY -1 DO
xt:=x[i];
IF j<1 THEN yt:=0 ELSE yt:=y[j] END;
IF xt<yt THEN x[i]:=SHORT(B+xt-yt+borrow); borrow:=-1
ELSE x[i]:=SHORT(xt-yt+borrow); borrow:=0
END;
DEC(j)
END;
ASSERT(borrow=0, 100);
RETURN Copy(x, len+1)
END Sub;
PROCEDURE Add (x: ARRAY OF INTEGER; VAR y: ARRAY OF INTEGER) : Integer;
(* Pre: x>0, y>0, LEN(x)>=LEN(y); Post: z=x+y *)
VAR xt, yt, i, j, len, r, carry: LONGINT; z: Integer;
BEGIN
len:=LEN(x)-1; j:=LEN(y)-1; carry:=0;
FOR i:= len TO 1 BY -1 DO
xt:=x[i];
IF j<1 THEN yt:=0 ELSE yt:=y[j] END;
r:=xt+yt+carry;
IF r>=B THEN x[i]:=SHORT(r-B); carry:=1
ELSE x[i]:=SHORT(r); carry:=0
END;
DEC(j)
END;
IF carry=1 THEN NEW(z, len+2);
FOR i:=1 TO len DO z[i+1]:=x[i] END; z[1]:=1;
RETURN z
ELSE RETURN Copy(x, len+1)
END
END Add;
PROCEDURE UCompare (VAR x, y: ARRAY OF INTEGER): LONGINT;
(* Post: x>y, RETURN 1; x=y, RETURN 0; x<y RETURN -1 *)
VAR xl, yl, i: LONGINT;
BEGIN
xl:=LEN(x); yl:=LEN(y);
IF xl>yl THEN RETURN 1 (* x len > y len so x > y *)
ELSIF xl<yl THEN RETURN -1 (* x len < y len so x < y *)
ELSE (* number lengths are the same *)
i:=0;
LOOP
INC(i);
IF i=xl THEN RETURN 0 (* done so x = y *)
ELSIF x[i]>y[i] THEN RETURN 1 (* upper x > upper y *)
ELSIF x[i]<y[i] THEN RETURN -1 (* upper x < upper y *)
END
END
END
END UCompare;
PROCEDURE MultDigit (VAR w, u : ARRAY OF INTEGER; digit: LONGINT; VAR c: INTEGER);
VAR i, k, t: LONGINT;
BEGIN
i:=LEN(u)-1; k:=c;
REPEAT
t:=u[i]*digit+k; (* multiply *)
w[i]:=SHORT(t MOD B); k:=t DIV B; (* generate result & carry *)
DEC(i)
UNTIL i=0;
c:=SHORT(k)
END MultDigit;
PROCEDURE MultAdd (VAR w, u, v : ARRAY OF INTEGER; digit: LONGINT; VAR c: INTEGER);
VAR i, k, t: LONGINT;
BEGIN
i:=LEN(u)-1; k:=c;
REPEAT
t:=u[i]*digit+k+v[i]; (* multiply *)
w[i]:=SHORT(t MOD B); k:=t DIV B; (* generate result & carry *)
DEC(i)
UNTIL i=0;
c:=SHORT(k)
END MultAdd;
PROCEDURE DivDigit (VAR w, u: ARRAY OF INTEGER; digit: LONGINT; VAR r: LONGINT);
VAR j, t, m: LONGINT;
BEGIN
j:=1; r:=0; m:=LEN(u)-1;
REPEAT
t:=r*B+u[j];
w[j]:=SHORT(t DIV digit); r:=t MOD digit; (* generate result & remainder *)
INC(j)
UNTIL j>m
END DivDigit;
PROCEDURE ModDigit (VAR u: ARRAY OF INTEGER; digit: LONGINT; VAR r: LONGINT);
VAR j, t, m, rl: LONGINT;
BEGIN
j:=1; rl:=0; m:=LEN(u)-1;
REPEAT
t:=rl*B+u[j];
rl:=t MOD digit; (* generate result & remainder *)
INC(j)
UNTIL j>m;
r:=SHORT(rl)
END ModDigit;
PROCEDURE ToString (x: ARRAY OF INTEGER; VAR s: ARRAY OF CHAR; base: INTEGER);
VAR i, d, l, xl, c, z: LONGINT; ch: CHAR;
PROCEDURE IsZero () : BOOLEAN;
VAR c: LONGINT;
BEGIN
c:=1; WHILE (c<=xl) & (x[c]=0) DO INC(c) END;
RETURN c>xl
END IsZero;
BEGIN
(* generate the number's sign *)
IF x[0]=negative THEN s[0]:="-"; c:=1 ELSE c:=0 END;
x[0]:=positive; l:=LEN(s)-1; xl:=LEN(x)-1; z:=c;
(* perform the conversion *)
WHILE ~IsZero() & (c<l) DO (* do while x>0 *)
DivDigit(x, x, base, d); (* d=x MOD base; x=x DIV base *)
IF d<10 THEN s[c]:=CHR(d+ORD("0")) (* add to string *)
ELSE s[c]:=CHR(d-10+ORD("A"))
END;
INC(c);
END;
ASSERT(c<l, 103); (* string has to be big enough *)
(* reverse the string characters *)
DEC(c);
FOR i:=z TO z+((c-z) DIV 2) DO
ch:=s[i]; s[i]:=s[c-i+z]; s[c-i+z]:= ch
END;
(* return something for a zero number *)
IF c<0 THEN s[0]:='0'; INC(c) END;
s[c+1]:=0X
END ToString;
PROCEDURE Mult (VAR w: ARRAY OF INTEGER; u, v: ARRAY OF INTEGER);
(* Pre: w=0, u>0, v>0; Post: w=u*v *)
VAR i, j, k, n, t, lw, off, um, vm: LONGINT;
BEGIN
(* least significant blocks *)
j:=LEN(v)-1; n:=LEN(u)-1; lw:=LEN(w)-1;
(* clear w *)
Assign(w, ZERO^);
(* offset is chosen so i+j+off<LEN(w) *)
off:=lw-j-n;
(* determine max digits in u and v *)
um:=0; WHILE (um<n) & (u[um+1]=0) DO INC(um) END;
vm:=0; WHILE (vm<j) & (v[vm+1]=0) DO INC(vm) END;
(* traditional multiplication algorithm radix B *)
REPEAT
IF v[j]#0 THEN (* perform the following if multiplier#0 *)
i:=n; k:=0; (* least significant block of multiplicand *)
REPEAT
t:=u[i]*v[j]+w[i+j+off]+k; (* multiply *)
w[i+j+off]:=SHORT(t MOD B); k:=t DIV B; (* generate result & carry *)
DEC(i)
UNTIL i<=um;
w[um+j+off]:=SHORT(k)
ELSE w[um+j+off]:=0
END;
DEC(j)
UNTIL j<=vm;
(* generate resultant sign *)
w[0]:=u[0]*v[0];
END Mult;
PROCEDURE QR (u, v : ARRAY OF INTEGER; VAR q, r: ARRAY OF INTEGER);
(* Pre: u>v, u>=0, v>B; Post: q=u DIV v, r=u-q*v *)
VAR i, k, mn, n, m, d, j, qp, uj, uj1, uj2, t, v1, v2: LONGINT;
c: INTEGER;
BEGIN
(* want u,v normalized so u[1]>=8000H *)
mn:=LEN(u)-1; i:=u[mn]; n:=LEN(v)-1; m:=mn-n;
d:=B DIV (v[1]+1);
(* scale u, v to be normalized *)
u[0]:=0; c:=0; (* clear input carries *)
MultDigit(u, u, d, u[0]); (* normalize u *)
MultDigit(v, v, d, c); (* normalize v *)
j:=0;
REPEAT
(* determine the value of the q[j] "digit" *)
uj:=u[j]; uj1:=u[j+1]; uj2:=u[j+2];
v1:=v[1]; v2:=v[2];
IF uj=v1 THEN qp:=B-1 ELSE qp:=(uj*B+uj1) DIV v1 END;
IF (v2*qp-uj2) DIV B > uj*B+uj1-qp*v1 THEN DEC(qp);
IF (v2*qp-uj2) DIV B > uj*B+uj1-qp*v1 THEN DEC(qp) END
END;
(* determine u = u-qp*v *)
i:=n; k:=0; c:=0; v[0]:=0;
REPEAT
t:=v[i]*qp+k; k:=t DIV B; (* multiply & remainder *)
t:=u[i+j]-(t MOD B)+c; (* subtraction *)
IF t<0 THEN c:=-1; u[i+j]:=SHORT(B+t) (* generate borrow *)
ELSE c:=0; u[i+j]:=SHORT(t)
END;
DEC(i)
UNTIL i<0;
(* test the remainder and add back -- if necessary *)
IF c<0 THEN DEC(qp); (* oops, add one divisor to dividend *)
k:=0;
FOR i:=n TO 1 BY -1 DO
t:=u[i+j]+v[i]+k;
IF t>=B THEN u[i+j]:=SHORT(t-B); k:=1
ELSE u[i+j]:=SHORT(t); k:=0
END
END;
u[j] := SHORT(u[j]+k-B)
END;
IF LEN(q)>1 THEN q[j]:=SHORT(qp) END;
INC(j)
UNTIL j>m;
(* denormalize the quotient *)
IF (LEN(q)>1) & (LEN(q)-1>=m+1) THEN
FOR i:=m TO 0 BY -1 DO q[i+1]:=q[i] END
END;
(* denormalize the remainder -- if needed *)
IF LEN(r)>1 THEN
FOR i:=1 TO n DO r[i]:=u[i+m] END;
DivDigit(r, r, d, i)
END
END QR;
PROCEDURE gcd (u: ARRAY OF INTEGER; v: LONGINT) : Integer;
(* Post: RETURN gcd(u,v) *)
VAR r, i, ul, m: LONGINT;
BEGIN
ul:=LEN(u)-1;
LOOP
IF v=0 THEN RETURN Copy(u, 0) END;
ModDigit(u, v, r); m:=ul-1;
IF v>B THEN u[ul]:=SHORT(v MOD B);
u[m]:=SHORT(v DIV B); DEC(m)
ELSE u[ul]:=SHORT(v)
END;
FOR i:=1 TO m DO u[i]:=0 END;
v:=r
END
END gcd;
PROCEDURE mgcd (u, v, t, w: ARRAY OF INTEGER) : Integer;
(* Pre: u>=0, v>=0, u>=v, LEN(t)=LEN(u)=LEN(w); Post: gcd(u,v) *)
VAR uh, vh, A, B, C, D, T, q, vl, ul, c: LONGINT;
null: ARRAY 1 OF INTEGER; (* empty variable *)
BEGIN
vl:=LEN(v)-1; ul:=LEN(u)-1;
LOOP
(* find next active digit *)
c:=1; WHILE (c<=vl) & (v[c]=0) DO INC(c) END;
(* terminate if one digit is left *)
IF c=vl THEN RETURN gcd(u, v[c]) END;
(* reduce the large number *)
vh:=v[c];
c:=1; WHILE (c<=ul) & (u[c]=0) DO INC(c) END;
uh:=u[c];
A:=1; B:=0; C:=0; D:=1;
LOOP
(* test the quotient *)
IF (vh+C=0) OR (vh+D=0) THEN EXIT END;
q:=(uh+A) DIV (vh+C);
IF q#(uh+B) DIV (vh+D) THEN EXIT END;
(* Euclid emulation *)
T:=A-q*C; A:=C; C:=T; T:=B-q*D;
B:=D; D:=T; T:=uh-q*vh; uh:=vh; vh:=T
END;
(* multi-precision operations *)
IF B=0 THEN
QR(u, v, null, t); (* t := u MOD v *)
Assign(u, v); (* u := v *)
Assign(v, t) (* v := t *)
ELSE
t[0]:=0; MultDigit(t, u, A, t[0]); (* t := A*u *)
w[0]:=0; MultDigit(w, u, C, w[0]); (* w := C*u *)
t[0]:=0; MultAdd(t, v, t, B, t[0]); (* t := t+B*v *)
w[0]:=0; MultAdd(w, v, w, D, w[0]); (* w := w+D*v *)
Assign(u, t); Assign(v, w); (* u := t; v := w *)
END
END
END mgcd;
PROCEDURE IntPower (VAR y: ARRAY OF INTEGER; x: ARRAY OF INTEGER; exp: LONGINT);
(* Pre: exp>=0; Post: y=x**exp *)
BEGIN
Assign(y, ONE^); (* y = 1 *)
LOOP
IF ODD(exp) THEN Mult(y, y, x) END;
exp:=exp DIV 2; (* simulate DIV 2 *)
IF exp=0 THEN EXIT END;
Mult(x, x, x)
END
END IntPower;
PROCEDURE ExtractDigit (x: ARRAY OF INTEGER; d: LONGINT) : LONGINT;
VAR b: LONGINT;
BEGIN
(* move the digit into the least significant position *)
WHILE d>0 DO DivDigit(x, x, 10, b); DEC(d) END;
(* extract the digit *)
ModDigit(x, 10, b);
RETURN b
END ExtractDigit;
PROCEDURE Times10 (VAR r: ARRAY OF INTEGER; b: INTEGER);
BEGIN
MultDigit(r, r, 10, b); ASSERT(b=0, 101)
END Times10;
(* Removed on Michael van Acken's order
PROCEDURE ShiftRight (x: ARRAY OF INTEGER; digits, bits: LONGINT) : Integer;
(* Pre: digits>=0, bits>=0; Post: RETURN x DIV (digits*B+bits) *)
VAR i, bpower: LONGINT;
BEGIN
(* shift whole digits *)
FOR i:=LEN(x)-1-digits TO 1 BY -1 DO x[i+digits]:=x[i] END;
FOR i:=1 TO digits DO x[i]:=0 END;
(* shift by bits *)
bpower:=1; WHILE bits>0 DO bpower:=bpower*2; DEC(bits) END; (* 2^bits *)
DivDigit(x, x, bpower, i);
RETURN Copy(x, 0) (* truncate leading zeros *)
END ShiftRight;
PROCEDURE ShiftLeft (VAR x: ARRAY OF INTEGER; digits, bits: LONGINT) : Integer;
(* Pre: digits>=0, bits>=0; Post: RETURN x * (digits*B+bits) *)
VAR i, bpower, lx: LONGINT; r: Integer; c: INTEGER;
BEGIN
(* allocate room for shifted result *)
lx:=LEN(x)+digits; IF bits>0 THEN INC(lx) END;
r:=New(lx); Assign(r^, x);
(* shift whole digits *)
FOR i:=1 TO lx-1-digits DO r[i]:=r[i+digits] END;
FOR i:=lx-digits TO lx-1 DO r[i]:=0 END;
(* shift by bits *)
bpower:=1; WHILE bits>0 DO bpower:=bpower*2; DEC(bits) END; (* 2^bits *)
c:=0; MultDigit(r^, r^, bpower, c);
IF r[1]=0 THEN RETURN Copy(r^, 0) ELSE RETURN r END
END ShiftLeft;
*)
(* removed to adhere to Oberon-F interface
(***********************************************************)
(* INTERNAL operations to type-cast Integers to/from Sets *)
(* DO NOT USE. Please use the ToSet & ToInteger routines *)
(* from the Sets module instead. *)
PROCEDURE ConvertToInteger * (x: ARRAY OF SET) : Integer;
CONST S=MAX(SET)+1;
VAR r: Integer; l, bit: LONGINT; c: INTEGER;
BEGIN
l:=S*LEN(x);
IF l MOD Log2B > 0 THEN r:=New(l DIV Log2B + 2) ELSE r:=New(l DIV Log2B + 1) END;
FOR bit:=LEN(x)*S-1 TO 0 BY -1 DO
IF (bit MOD S) IN x[bit DIV S] THEN c:=1 ELSE c:=0 END;
MultDigit(r^, r^, 2, c)
END;
IF r[1]#0 THEN RETURN r ELSE RETURN Copy(r^, 0) END
END ConvertToInteger;
PROCEDURE ConvertToSet * (x : ARRAY OF INTEGER; VAR s: ARRAY OF SET);
VAR l, bit, d: LONGINT;
PROCEDURE IsZero () : BOOLEAN;
VAR c: LONGINT;
BEGIN
c:=1; WHILE (c<=l) & (x[c]=0) DO INC(c) END;
RETURN c>l
END IsZero;
BEGIN
l:=LEN(x)-1; bit:=0;
WHILE ~IsZero() DO (* lowest bit to highest *)
IF ODD(x[l]) THEN INCL(s[bit DIV 32], bit MOD 32) END;
DivDigit(x, x, 2, d); INC(bit)
END
END ConvertToSet;
*)
(***********************************************************)
(* Operations to convert standard numbers to/from Integers *)
PROCEDURE Entier* (x: LONGREAL) : Integer;
(* Returns the largest integer not greater than `x' *)
CONST SCALE=1.0/B;
VAR ix: ARRAY 65 OF INTEGER; i, exp: LONGINT;
BEGIN
IF x<0 THEN ix[0]:=negative; x:=-x (* adjust for negatives *)
ELSE ix[0]:=positive
END;
exp:=0;
WHILE x>B DO x:=x*SCALE; INC(exp) END; (* scale down the number *)
FOR i:=1 TO exp+1 DO
ix[i]:=SHORT(ENTIER(x)); x:=(x-ix[i])*B (* convert/store the number *)
END;
RETURN Copy(ix, exp+2)
END Entier;
PROCEDURE Float* (x: Integer) : LONGREAL;
VAR cnt, len: LONGINT; r: LONGREAL;
BEGIN
len:=LEN(x^)-1; r:=x[1];
FOR cnt:=2 TO len DO
IF r<MAX(LONGREAL)/B THEN r:=r*BR+x[cnt]
ELSIF x[0]=negative THEN RETURN MIN(LONGREAL)
ELSE RETURN MAX(LONGREAL)
END
END;
IF x[0]=negative THEN RETURN -r ELSE RETURN r END
END Float;
PROCEDURE Long* (x: LONGINT) : Integer;
VAR si: ARRAY 4 OF INTEGER;
BEGIN
IF x=MIN(LONGINT) THEN
si[0]:=negative; si[1]:=2; si[2]:=0; si[3]:=0
ELSE
IF x<0 THEN x:=-x; si[0]:=negative ELSE si[0]:=positive END;
si[1]:=SHORT(x DIV (B*B));
si[2]:=SHORT((x DIV B) MOD B);
si[3]:=SHORT(x MOD B)
END;
RETURN Copy(si, 4)
END Long;
PROCEDURE Short* (x: Integer) : LONGINT;
VAR r, l, m: LONGINT;
BEGIN
m:=LEN(x^)-1; r:=x[1]; l:=2;
WHILE l<=m DO
IF r>(MAX(LONGINT)-x[l]) DIV B THEN (* saturate number *)
IF x[0]=negative THEN RETURN MIN(LONGINT)
ELSE RETURN MAX(LONGINT)
END
ELSE r:=r*B+x[l]
END;
INC(l)
END;
(* adjust for negative sign *)
IF x[0]=negative THEN RETURN -r ELSE RETURN r END
END Short;
(***********************************************************)
(* Operations to internalize/externalize Integers *)
PROCEDURE Externalize* (VAR w: BinaryRider.Writer; x: Integer);
VAR i: LONGINT;
BEGIN
w.WriteNum(LEN(x^));
FOR i:=0 TO LEN(x^)-1 DO w.WriteInt(x[i]) END
END Externalize;
PROCEDURE Internalize* (VAR r: BinaryRider.Reader; VAR x: Integer);
VAR i, s: LONGINT;
BEGIN
r.ReadNum(s); NEW(x, s);
FOR i:=0 TO s-1 DO r.ReadInt(x[i]) END
END Internalize;
(***********************************************************)
(* Mathematical operations on Integers *)
PROCEDURE Abs* (x: Integer) : Integer;
VAR r: Integer;
BEGIN
IF x[0]=negative THEN r:=Copy(x^, 0); r[0]:=positive; RETURN r
ELSE RETURN x
END
END Abs;
PROCEDURE Odd* (x: Integer) : BOOLEAN;
BEGIN
RETURN ODD(x[LEN(x^)-1])
END Odd;
PROCEDURE Compare* (x, y: Integer): LONGINT;
(* Post: x>y, RETURN 1; x=y, RETURN 0; x<y RETURN -1 *)
BEGIN
IF x[0]#y[0] THEN RETURN x[0] (* if x<0 and y>0 then x<y and vice versa *)
ELSE RETURN UCompare(x^, y^) (* signs are the same *)
END
END Compare;
PROCEDURE Difference* (x, y: Integer) : Integer;
(* Post: RETURN x-y *)
VAR d: Integer;
BEGIN
(* ensure that ABS(x)>ABS(y) *)
IF UCompare(x^, y^)<0 THEN d:=y; y:=x; x:=d END; (* swap x and y *)
(* determine how to subtract the numbers *)
IF x[0]=y[0] THEN d:=Sub(x^, y^) (* x+,y+, so z=x-y or x-,y-, so z=-x-(-y)=-(x-y) *)
ELSE d:=Add(x^, y^) (* x-,y+, so z=-x-y=-(x+y) or x+,y-, so z=x-(-y)=x+y *)
END;
d[0]:=x[0]; (* sign of x always gives the right result *)
RETURN d
END Difference;
PROCEDURE Sum* (x, y: Integer) : Integer;
(* Post: RETURN x+y *)
VAR d: Integer;
BEGIN
(* ensure that ABS(x)>ABS(y) *)
IF UCompare(x^, y^)<0 THEN d:=y; y:=x; x:=d END; (* swap x and y *)
(* determine how to subtract the numbers *)
IF x[0]#y[0] THEN d:=Sub(x^, y^) (* x-,y+, so z=-x+y=-(x-y) or x+,y-, so z=x-y *)
ELSE d:=Add(x^, y^) (* x+,y+, so z=x-y or x-,y-, so z=-x-(-y)=-(x-y) *)
END;
d[0]:=x[0]; (* sign of x always gives the right result *)
RETURN d
END Sum;
PROCEDURE Product* (x, y: Integer) : Integer;
(* Post: RETURN x*y *)
VAR w: Integer;
BEGIN
(* allocate space for result and clear it *)
w:=New(LEN(y^)+LEN(x^)-1);
(* perform the multiplication *)
Mult(w^, x^, y^);
IF w[1]=0 THEN RETURN Copy(w^, 0) (* truncate leading zero *)
ELSE RETURN w
END
END Product;
PROCEDURE QuoRem* (x, y: Integer; VAR quo, rem: Integer);
(* Pre: y#0; Post: quo=x DIV y, rem= x MOD y *)
VAR cmp: LONGINT; one: ARRAY 2 OF INTEGER;
PROCEDURE FixUp ();
BEGIN
(* fix up remainder/quotient *)
IF (rem[1]#0) & (x[0]#y[0]) THEN
rem:=Sub(y^, rem^); quo:=Add(quo^, ONE^)
END;
(* fix up the signs *)
rem[0]:=y[0];
quo[0]:=x[0]*y[0]
END FixUp;
BEGIN
(* division by zero? *)
ASSERT(y[1]#0, 103); (* ensure y#0 *)
(* return trivial results *)
cmp:=UCompare(x^, y^);
IF cmp<0 THEN (* x<y *)
quo:=New(2); rem:=Copy(x^, 0); (* x DIV y=0, x MOD y=x *)
FixUp; RETURN
ELSIF cmp=0 THEN (* x=y *)
one[0]:=x[0]*y[0]; one[1]:=1; (* x DIV y = 1 *)
quo:=Copy(one, 0);
rem:=ZERO; (* x MOD y = 0 *)
RETURN
END;
(* perform the division *)
IF LEN(y^)=2 THEN (* single-digit divide *)
quo:=New(LEN(x^));
DivDigit(quo^, x^, y[1], cmp);
one[1]:=SHORT(cmp); rem:=Copy(one, 2)
ELSE (* full divide *)
cmp:=LEN(x^)-LEN(y^)+1;
IF cmp=1 THEN cmp:=2 END;
quo:=New(cmp); rem:=New(LEN(y^));
QR(x^, y^, quo^, rem^)
END;
(* adjust for negative numbers *)
FixUp
END QuoRem;
PROCEDURE Quotient* (x, y: Integer) : Integer;
(* Pre: y#0; Post: RETURN x DIV y *)
VAR q, r: Integer;
BEGIN
QuoRem(x, y, q, r); RETURN q
END Quotient;
PROCEDURE Remainder* (x, y: Integer) : Integer;
(* Pre: y#0; Post: RETURN x MOD y *)
VAR
q, r: Integer;
BEGIN
QuoRem(x, y, q, r); RETURN r
END Remainder;
PROCEDURE GCD* (x, y: Integer) : Integer;
(* Pre: x,y >= 0; Post: RETURN gcd(x,y) *)
BEGIN
IF UCompare(x^, y^)>=0 THEN RETURN mgcd(x^, y^, x^, x^)
ELSE RETURN mgcd(y^, x^, y^, y^)
END
END GCD;
PROCEDURE Power* (x: Integer; exp: LONGINT) : Integer;
(* Pre: exp>=0; Post: RETURN x**exp *)
VAR y: Integer;
BEGIN
IF exp<0 THEN RETURN New(2) END; (* x**-exp = 0 *)
y:=New((LEN(x^)-1)*exp+1); Assign(y^, x^); (* y = x *)
IntPower(y^, y^, exp);
IF y[1]=0 THEN RETURN Copy(y^, 0) ELSE RETURN y END
END Power;
PROCEDURE Sign* (x: Integer) : SHORTINT;
(* Post: x>0, RETURN 1; x=0, RETURN 0; x<0, RETURN -1 *)
BEGIN
IF x[1]=0 THEN RETURN 0
ELSE RETURN SHORT(x[0])
END
END Sign;
PROCEDURE Factorial* (x: LONGINT) : Integer;
(* Pre: x>=0; Post: RETURN x!=x(x-1)(x-2)...(2)(1) *)
VAR f: Integer; t, bits: LONGINT; c: INTEGER;
BEGIN
ASSERT(x>=0, 108); t:=x; bits:=0;
IF x<2 THEN RETURN ONE END; (* 0! & 1! *)
WHILE t>0 DO t:=t DIV B; INC(bits) END; (* log32768(x) *)
f:=New(4*x*bits DIV 5 + 1); (* #digits=4*x*log32768(x)/5 *)
Assign(f^, ONE^); (* f=1 *)
WHILE x>1 DO
c:=0; MultDigit(f^, f^, x, c); DEC(x) (* f=f*x *)
END;
RETURN Copy(f^, 0)
END Factorial;
(* Michael van Acken doesn't like these routines
being in here.
PROCEDURE Random* (digits: LONGINT) : Integer;
(* Pre: x>0; Post: RETURN digits-length random number *)
CONST a=16385; c=1;
VAR n: Integer; i: LONGINT; s: Time.TimeStamp; cs: Cal.Calendar;
BEGIN
ASSERT(digits>0, 109); SysClock.GetClock(cs); cs.ToTimeStamp(s);
n:=New(2215*digits DIV 10000+1); (* n=digits*log32768(10) *)
n[1]:=SHORT((a*SHORT(s.msecs MOD B)+c) MOD B);
FOR i:=2 TO LEN(n^)-1 DO n[i]:=SHORT((a*n[i-1]+c) MOD B) END;
RETURN n
END Random;
PROCEDURE Shift* (x: Integer; exp: LONGINT) : Integer;
(* Post: RETURN Floor(x*2^exp) *)
VAR sh: LONGINT;
BEGIN
(* eliminate out of bound and trivial shifts *)
IF exp=0 THEN RETURN x
ELSIF exp<(1-LEN(x^))*Log2B THEN RETURN ZERO
END;
(* break down the shift into bit shifts and digit shifts *)
sh:=ABS(exp) DIV Log2B; (* number of whole digits *)
IF exp<0 THEN
RETURN ShiftRight(x^, sh, -(exp+Log2B*sh))
ELSE
RETURN ShiftLeft(x^, sh, exp-Log2B*sh)
END
END Shift;
*)
(***********************************************************)
(* Operations to extract pieces of Integers *)
PROCEDURE ThisDigit10* (x: Integer; exp10: LONGINT) : CHAR;
(* Pre: exp10>=0; Post: RETURN (x DIV 10^exp10) MOD 10 *)
BEGIN
ASSERT(exp10>=0, 106); (* error indication *)
RETURN CHR(ExtractDigit(x^, exp10)+ORD("0"))
END ThisDigit10;
PROCEDURE Digits10Of* (x: Integer) : LONGINT;
(* Post: RETURN x MOD 1000000000 *)
VAR d: ARRAY 3 OF INTEGER; dummy: ARRAY 1 OF INTEGER;
BEGIN
d[0]:=positive; d[1]:=7735H; d[2]:=4A00H; (* 1000000000 *)
QR(x^, d, dummy, d); (* x MOD 1000000000 *)
RETURN d[1]*B+d[2]
END Digits10Of;
(***********************************************************)
(* Operations to convert strings to/from Integers *)
PROCEDURE ConvertFromString* (s: ARRAY OF CHAR; VAR x: Integer);
(* Pre: [+|-]d{d} where d=["0".."9"]; Post: `x' contains integer *)
CONST Tab = 9X; Space = " "; base=10; (* could be made an argument *)
VAR i, c, e: LONGINT; neg: BOOLEAN; maxChar1, maxChar2: CHAR;
BEGIN
(* skip whitespace *)
ASSERT((base>=2) & (base<=36), 110);
IF base>10 THEN maxChar1:="9"; maxChar2:=CHR(base-11+ORD("A"))
ELSE maxChar1:=CHR(base-1+ORD("0")); maxChar2:=0X
END;
c:=0; WHILE (s[c]=Space) OR (s[c]=Tab) DO INC(c) END;
(* check for a sign *)
IF s[c]="-" THEN neg:=TRUE; INC(c)
ELSIF s[c]="+" THEN neg:=FALSE; INC(c)
ELSE neg:=FALSE
END;
(* find end of number *)
e:=c; WHILE ((s[e]>="0")&(s[e]<=maxChar1)) OR ((s[e]>="A")&(s[e]<=maxChar2)) DO INC(e) END;
(* determine resultant size and allocate number *)
i:=69*(e-c) DIV 320 + 2;
(* convert to binary *)
x:=New(i); (* x = 0 *)
WHILE c<e DO
IF s[c]<="9" THEN Times10(x^, ORD(s[c])-ORD("0"))
ELSE Times10(x^, ORD(s[c])-ORD("A"))
END;
INC(c)
END;
IF neg THEN x[0]:=negative END; (* adjust the sign *)
IF x[1]=0 THEN x:=Copy(x^, 0) END (* truncate leading zero *)
END ConvertFromString;
PROCEDURE ConvertToString* (x: Integer; VAR s: ARRAY OF CHAR);
(* Post: s holds a string representation of `x' *)
BEGIN
(* convert the number in ToString so a stack copy of x is used *)
ToString(x^, s, 10)
END ConvertToString;
BEGIN
ZERO:=New(2); ONE:=New(2); ONE[1]:=1;
END Integers.
|