1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
(* $Id: RealMath.Mod,v 1.6 1999/09/02 13:19:17 acken Exp $ *)
MODULE RealMath;
(*
RealMath - Target independent mathematical functions for REAL
(IEEE single-precision) numbers.
Numerical approximations are taken from "Software Manual for the
Elementary Functions" by Cody & Waite and "Computer Approximations"
by Hart et al.
Copyright (C) 1995 Michael Griebling
This module is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This module is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
IMPORT l := LowReal, S := SYSTEM;
CONST
pi* = 3.1415926535897932384626433832795028841972;
exp1* = 2.7182818284590452353602874713526624977572;
ZERO=0.0; ONE=1.0; HALF=0.5; TWO=2.0; (* local constants *)
(* internally-used constants *)
huge=l.large; (* largest number this package accepts *)
miny=ONE/huge; (* smallest number this package accepts *)
sqrtHalf=0.70710678118654752440;
Limit=2.4414062E-4; (* 2**(-MantBits/2) *)
eps=2.9802322E-8; (* 2**(-MantBits-1) *)
piInv=0.31830988618379067154; (* 1/pi *)
piByTwo=1.57079632679489661923132;
piByFour=0.78539816339744830962;
lnv=0.6931610107421875; (* should be exact *)
vbytwo=0.13830277879601902638E-4; (* used in sinh/cosh *)
ln2Inv=1.44269504088896340735992468100189213;
(* error/exception codes *)
NoError*=0; IllegalRoot*=1; IllegalLog*=2; Overflow*=3; IllegalPower*=4; IllegalLogBase*=5;
IllegalTrig*=6; IllegalInvTrig*=7; HypInvTrigClipped*=8; IllegalHypInvTrig*=9;
LossOfAccuracy*=10; Underflow*=11;
VAR
a1: ARRAY 18 OF REAL; (* lookup table for power function *)
a2: ARRAY 9 OF REAL; (* lookup table for power function *)
em: REAL; (* largest number such that 1+epsilon > 1.0 *)
LnInfinity: REAL; (* natural log of infinity *)
LnSmall: REAL; (* natural log of very small number *)
SqrtInfinity: REAL; (* square root of infinity *)
TanhMax: REAL; (* maximum Tanh value *)
t: REAL; (* internal variables *)
(* internally used support routines *)
PROCEDURE SinCos (x, y, sign: REAL): REAL;
CONST
ymax=9099; (* ENTIER(pi*2**(MantBits/2)) *)
r1=-0.1666665668E+0;
r2= 0.8333025139E-2;
r3=-0.1980741872E-3;
r4= 0.2601903036E-5;
VAR
n: LONGINT; xn, f, g: REAL;
BEGIN
IF y>=ymax THEN l.ErrorHandler(LossOfAccuracy); RETURN ZERO END;
(* determine the reduced number *)
n:=ENTIER(y*piInv+HALF); xn:=n;
IF ODD(n) THEN sign:=-sign END;
x:=ABS(x);
IF x#y THEN xn:=xn-HALF END;
(* fractional part of reduced number *)
f:=SHORT(ABS(LONG(x)) - LONG(xn)*pi);
(* Pre: |f| <= pi/2 *)
IF ABS(f)<Limit THEN RETURN sign*f END;
(* evaluate polynomial approximation of sin *)
g:=f*f; g:=(((r4*g+r3)*g+r2)*g+r1)*g;
g:=f+f*g; (* don't use less accurate f(1+g) *)
RETURN sign*g
END SinCos;
PROCEDURE div (x, y : LONGINT) : LONGINT;
(* corrected MOD function *)
BEGIN
IF x < 0 THEN RETURN -ABS(x) DIV y ELSE RETURN x DIV y END
END div;
(* forward declarations *)
PROCEDURE^ arctan2* (xn, xd: REAL): REAL;
PROCEDURE^ sincos* (x: REAL; VAR Sin, Cos: REAL);
PROCEDURE round*(x: REAL): LONGINT;
(* Returns the value of x rounded to the nearest integer *)
BEGIN
IF x<ZERO THEN RETURN -ENTIER(HALF-x)
ELSE RETURN ENTIER(x+HALF)
END
END round;
PROCEDURE sqrt*(x: REAL): REAL;
(* Returns the positive square root of x where x >= 0 *)
CONST
P0=0.41731; P1=0.59016;
VAR
xMant, yEst, z: REAL; xExp: INTEGER;
BEGIN
(* optimize zeros and check for illegal negative roots *)
IF x=ZERO THEN RETURN ZERO END;
IF x<ZERO THEN l.ErrorHandler(IllegalRoot); x:=-x END;
(* reduce the input number to the range 0.5 <= x <= 1.0 *)
xMant:=l.fraction(x)*HALF; xExp:=l.exponent(x)+1;
(* initial estimate of the square root *)
yEst:=P0+P1*xMant;
(* perform two newtonian iterations *)
z:=(yEst+xMant/yEst); yEst:=0.25*z+xMant/z;
(* adjust for odd exponents *)
IF ODD(xExp) THEN yEst:=yEst*sqrtHalf; INC(xExp) END;
(* single Newtonian iteration to produce real number accuracy *)
RETURN l.scale(yEst, xExp DIV 2)
END sqrt;
PROCEDURE exp*(x: REAL): REAL;
(* Returns the exponential of x for x < Ln(MAX(REAL)) *)
CONST
ln2=0.6931471805599453094172321D0;
P0=0.24999999950E+0; P1=0.41602886268E-2; Q1=0.49987178778E-1;
VAR xn, g, p, q, z: REAL; n: LONGINT;
BEGIN
(* Ensure we detect overflows and return 0 for underflows *)
IF x>=LnInfinity THEN l.ErrorHandler(Overflow); RETURN huge
ELSIF x<LnSmall THEN l.ErrorHandler(Underflow); RETURN ZERO
ELSIF ABS(x)<eps THEN RETURN ONE
END;
(* Decompose and scale the number *)
n:=round(ln2Inv*x);
xn:=n; g:=SHORT(LONG(x)-LONG(xn)*ln2);
(* Calculate exp(g)/2 from "Software Manual for the Elementary Functions" *)
z:=g*g; p:=(P1*z+P0)*g; q:=Q1*z+HALF;
RETURN l.scale(HALF+p/(q-p), SHORT(n+1))
END exp;
PROCEDURE ln*(x: REAL): REAL;
(* Returns the natural logarithm of x for x > 0 *)
CONST
c1=355.0/512.0; c2=-2.121944400546905827679E-4;
A0=-0.5527074855E+0; B0=-0.6632718214E+1;
VAR f, zn, zd, r, z, w, xn: REAL; n: INTEGER;
BEGIN
(* ensure illegal inputs are trapped and handled *)
IF x<=ZERO THEN l.ErrorHandler(IllegalLog); RETURN -huge END;
(* reduce the range of the input *)
f:=l.fraction(x)*HALF; n:=l.exponent(x)+1;
IF f>sqrtHalf THEN zn:=(f-HALF)-HALF; zd:=f*HALF+HALF
ELSE zn:=f-HALF; zd:=zn*HALF+HALF; DEC(n)
END;
(* evaluate rational approximation from "Software Manual for the Elementary Functions" *)
z:=zn/zd; w:=z*z; r:=z+z*(w*A0/(w+B0));
(* scale the output *)
xn:=n;
RETURN (xn*c2+r)+xn*c1
END ln;
(* The angle in all trigonometric functions is measured in radians *)
PROCEDURE sin*(x: REAL): REAL;
(* Returns the sine of x for all x *)
BEGIN
IF x<ZERO THEN RETURN SinCos(x, -x, -ONE)
ELSE RETURN SinCos(x, x, ONE)
END
END sin;
PROCEDURE cos*(x: REAL): REAL;
(* Returns the cosine of x for all x *)
BEGIN
RETURN SinCos(x, ABS(x)+piByTwo, ONE)
END cos;
PROCEDURE tan*(x: REAL): REAL;
(* Returns the tangent of x where x cannot be an odd multiple of pi/2 *)
CONST
ymax = 6434; (* ENTIER(2**(MantBits/2)*pi/2) *)
twoByPi = 0.63661977236758134308;
P1=-0.958017723E-1; Q1=-0.429135777E+0; Q2=0.971685835E-2;
VAR
n: LONGINT;
y, xn, f, xnum, xden, g: REAL;
BEGIN
(* check for error limits *)
y:=ABS(x);
IF y>ymax THEN l.ErrorHandler(LossOfAccuracy); RETURN ZERO END;
(* determine n and the fraction f *)
n:=round(x*twoByPi); xn:=n;
f:=SHORT(LONG(x)-LONG(xn)*piByTwo);
(* check for underflow *)
IF ABS(f)<Limit THEN xnum:=f; xden:=ONE
ELSE g:=f*f; xnum:=P1*g*f+f; xden:=(Q2*g+Q1)*g+HALF+HALF
END;
(* find the final result *)
IF ODD(n) THEN RETURN xden/(-xnum)
ELSE RETURN xnum/xden
END
END tan;
PROCEDURE asincos (x: REAL; flag: LONGINT; VAR i: LONGINT; VAR res: REAL);
CONST
P1=0.933935835E+0; P2=-0.504400557E+0;
Q0=0.560363004E+1; Q1=-0.554846723E+1;
VAR
y, g, r: REAL;
BEGIN
y:=ABS(x);
IF y>HALF THEN
i:=1-flag;
IF y>ONE THEN l.ErrorHandler(IllegalInvTrig); res:=huge; RETURN END;
(* reduce the input argument *)
g:=(ONE-y)*HALF; r:=-sqrt(g); y:=r+r;
(* compute approximation *)
r:=((P2*g+P1)*g)/((g+Q1)*g+Q0);
res:=y+(y*r)
ELSE
i:=flag;
IF y<Limit THEN res:=y
ELSE
g:=y*y;
(* compute approximation *)
g:=((P2*g+P1)*g)/((g+Q1)*g+Q0);
res:=y+y*g
END
END
END asincos;
PROCEDURE arcsin*(x: REAL): REAL;
(* Returns the arcsine of x, in the range [-pi/2, pi/2] where -1 <= x <= 1 *)
VAR
res: REAL; i: LONGINT;
BEGIN
asincos(x, 0, i, res);
IF l.err#0 THEN RETURN res END;
(* adjust result for the correct quadrant *)
IF i=1 THEN res:=piByFour+(piByFour+res) END;
IF x<0 THEN res:=-res END;
RETURN res
END arcsin;
PROCEDURE arccos*(x: REAL): REAL;
(* Returns the arccosine of x, in the range [0, pi] where -1 <= x <= 1 *)
VAR
res: REAL; i: LONGINT;
BEGIN
asincos(x, 1, i, res);
IF l.err#0 THEN RETURN res END;
(* adjust result for the correct quadrant *)
IF x<0 THEN
IF i=0 THEN res:=piByTwo+(piByTwo+res)
ELSE res:=piByFour+(piByFour+res)
END
ELSE
IF i=1 THEN res:=piByFour+(piByFour-res)
ELSE res:=-res
END;
END;
RETURN res
END arccos;
PROCEDURE atan(f: REAL): REAL;
(* internal arctan algorithm *)
CONST
rt32=0.26794919243112270647;
rt3=1.73205080756887729353;
a=rt3-ONE;
P0=-0.4708325141E+0; P1=-0.5090958253E-1; Q0=0.1412500740E+1;
piByThree=1.04719755119659774615;
piBySix=0.52359877559829887308;
VAR
n: LONGINT; res, g: REAL;
BEGIN
IF f>ONE THEN f:=ONE/f; n:=2
ELSE n:=0
END;
(* check if f should be scaled *)
IF f>rt32 THEN f:=(((a*f-HALF)-HALF)+f)/(rt3+f); INC(n) END;
(* check for underflow *)
IF ABS(f)<Limit THEN res:=f
ELSE
g:=f*f; res:=(P1*g+P0)*g/(g+Q0); res:=f+f*res
END;
IF n>1 THEN res:=-res END;
CASE n OF
| 1: res:=res+piBySix
| 2: res:=res+piByTwo
| 3: res:=res+piByThree
| ELSE (* do nothing *)
END;
RETURN res
END atan;
PROCEDURE arctan*(x: REAL): REAL;
(* Returns the arctangent of x, in the range [-pi/2, pi/2] for all x *)
BEGIN
IF x<0 THEN RETURN -atan(-x)
ELSE RETURN atan(x)
END
END arctan;
PROCEDURE power*(base, exponent: REAL): REAL;
(* Returns the value of the number base raised to the power exponent
for base > 0 *)
CONST P1=0.83357541E-1; K=0.4426950409;
Q1=0.69314675; Q2=0.24018510; Q3=0.54360383E-1;
OneOver16=0.0625; XMAX=16*(l.expoMax+1)-1; XMIN=16*l.expoMin;
VAR z, g, R, v, u2, u1, w1, w2: REAL; w: LONGREAL;
m, p, i: INTEGER; mp, pp, iw1: LONGINT;
BEGIN
(* handle all possible error conditions *)
IF base<=ZERO THEN
IF base#ZERO THEN l.ErrorHandler(IllegalPower); base:=-base
ELSIF exponent>ZERO THEN RETURN ZERO
ELSE l.ErrorHandler(IllegalPower); RETURN huge
END
END;
(* extract the exponent of base to m and clear exponent of base in g *)
g:=l.fraction(base)*HALF; m:=l.exponent(base)+1;
(* determine p table offset with an unrolled binary search *)
p:=1;
IF g<=a1[9] THEN p:=9 END;
IF g<=a1[p+4] THEN INC(p, 4) END;
IF g<=a1[p+2] THEN INC(p, 2) END;
(* compute scaled z so that |z| <= 0.044 *)
z:=((g-a1[p+1])-a2[(p+1) DIV 2])/(g+a1[p+1]); z:=z+z;
(* approximation for log2(z) from "Software Manual for the Elementary Functions" *)
v:=z*z; R:=P1*v*z; R:=R+K*R; u2:=(R+z*K)+z;
u1:=(m*16-p)*OneOver16; w:=LONG(exponent)*(LONG(u1)+LONG(u2)); (* need extra precision *)
(* calculations below were modified to work properly -- incorrect in cited reference? *)
iw1:=ENTIER(16*w); w1:=iw1*OneOver16; w2:=SHORT(w-w1);
(* check for overflow/underflow *)
IF iw1>XMAX THEN l.ErrorHandler(Overflow); RETURN huge
ELSIF iw1<XMIN THEN l.ErrorHandler(Underflow); RETURN ZERO
END;
(* final approximation 2**w2-1 where -0.0625 <= w2 <= 0 *)
IF w2>ZERO THEN INC(iw1); w2:=w2-OneOver16 END; IF iw1<0 THEN i:=0 ELSE i:=1 END;
mp:=div(iw1, 16)+i; pp:=16*mp-iw1; z:=((Q3*w2+Q2)*w2+Q1)*w2; z:=a1[pp+1]+a1[pp+1]*z;
RETURN l.scale(z, SHORT(mp))
END power;
PROCEDURE IsRMathException*(): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state
because of the raising of the RealMath exception; otherwise returns FALSE.
*)
BEGIN
RETURN FALSE
END IsRMathException;
(*
Following routines are provided as extensions to the ISO standard.
They are either used as the basis of other functions or provide
useful functions which are not part of the ISO standard.
*)
PROCEDURE log* (x, base: REAL): REAL;
(* log(x,base) is the logarithm of x base 'base'. All positive arguments are
allowed but base > 0 and base # 1 *)
BEGIN
(* log(x, base) = ln(x) / ln(base) *)
IF base<=ZERO THEN l.ErrorHandler(IllegalLogBase); RETURN -huge
ELSE RETURN ln(x)/ln(base)
END
END log;
PROCEDURE ipower* (x: REAL; base: INTEGER): REAL;
(* ipower(x, base) returns the x to the integer power base where Log2(x) < expoMax *)
VAR Exp: INTEGER; y: REAL; neg: BOOLEAN;
PROCEDURE Adjust(xadj: REAL): REAL;
BEGIN
IF (x<ZERO)&ODD(base) THEN RETURN -xadj ELSE RETURN xadj END
END Adjust;
BEGIN
(* handle all possible error conditions *)
IF base=0 THEN RETURN ONE (* x**0 = 1 *)
ELSIF ABS(x)<miny THEN
IF base>0 THEN RETURN ZERO ELSE l.ErrorHandler(Overflow); RETURN Adjust(huge) END
END;
(* trap potential overflows and underflows *)
Exp:=(l.exponent(x)+1)*base; y:=LnInfinity*ln2Inv;
IF Exp>y THEN l.ErrorHandler(Overflow); RETURN Adjust(huge)
ELSIF Exp<-y THEN RETURN ZERO
END;
(* compute x**base using an optimised algorithm from Knuth, slightly
altered : p442, The Art Of Computer Programming, Vol 2 *)
y:=ONE; IF base<0 THEN neg:=TRUE; base := -base ELSE neg:= FALSE END;
LOOP
IF ODD(base) THEN y:=y*x END;
base:=base DIV 2; IF base=0 THEN EXIT END;
x:=x*x;
END;
IF neg THEN RETURN ONE/y ELSE RETURN y END
END ipower;
PROCEDURE sincos* (x: REAL; VAR Sin, Cos: REAL);
(* More efficient sin/cos implementation if both values are needed. *)
BEGIN
Sin:=sin(x); Cos:=sqrt(ONE-Sin*Sin)
END sincos;
PROCEDURE arctan2* (xn, xd: REAL): REAL;
(* arctan2(xn,xd) is the quadrant-correct arc tangent atan(xn/xd). If the
denominator xd is zero, then the numerator xn must not be zero. All
arguments are legal except xn = xd = 0. *)
VAR
res: REAL; xpdiff: LONGINT;
BEGIN
(* check for error conditions *)
IF xd=ZERO THEN
IF xn=ZERO THEN l.ErrorHandler(IllegalTrig); RETURN ZERO
ELSIF xn<0 THEN RETURN -piByTwo
ELSE RETURN piByTwo
END;
ELSE
xpdiff:=l.exponent(xn)-l.exponent(xd);
IF ABS(xpdiff)>=l.expoMax-3 THEN
(* overflow detected *)
IF xn<0 THEN RETURN -piByTwo
ELSE RETURN piByTwo
END
ELSE
res:=ABS(xn/xd);
IF res#ZERO THEN res:=atan(res) END;
IF xd<ZERO THEN res:=pi-res END;
IF xn<ZERO THEN RETURN -res
ELSE RETURN res
END
END
END
END arctan2;
PROCEDURE sinh* (x: REAL): REAL;
(* sinh(x) is the hyperbolic sine of x. The argument x must not be so large
that exp(|x|) overflows. *)
CONST P0=-7.13793159; P1=-0.190333399; Q0=-42.8277109;
VAR y, f: REAL;
BEGIN y:=ABS(x);
IF y<=ONE THEN (* handle small arguments *)
IF y<Limit THEN RETURN x END;
(* use approximation from "Software Manual for the Elementary Functions" *)
f:=y*y; y:=f*((f*P1+P0)/(f+Q0)); RETURN x+x*y
ELSIF y>LnInfinity THEN (* handle exp overflows *)
y:=y-lnv;
IF y>LnInfinity-lnv+0.69 THEN l.ErrorHandler(Overflow);
IF x>ZERO THEN RETURN huge ELSE RETURN -huge END
ELSE f:=exp(y); f:=f+f*vbytwo (* don't change to f(1+vbytwo) *)
END
ELSE f:=exp(y); f:=(f-ONE/f)*HALF
END;
(* reach here when 1 < ABS(x) < LnInfinity-lnv+0.69 *)
IF x>ZERO THEN RETURN f ELSE RETURN -f END
END sinh;
PROCEDURE cosh* (x: REAL): REAL;
(* cosh(x) is the hyperbolic cosine of x. The argument x must not be so large
that exp(|x|) overflows. *)
VAR y, f: REAL;
BEGIN y:=ABS(x);
IF y>LnInfinity THEN (* handle exp overflows *)
y:=y-lnv;
IF y>LnInfinity-lnv+0.69 THEN l.ErrorHandler(Overflow);
IF x>ZERO THEN RETURN huge ELSE RETURN -huge END
ELSE f:=exp(y); RETURN f+f*vbytwo (* don't change to f(1+vbytwo) *)
END
ELSE f:=exp(y); RETURN (f+ONE/f)*HALF
END
END cosh;
PROCEDURE tanh* (x: REAL): REAL;
(* tanh(x) is the hyperbolic tangent of x. All arguments are legal. *)
CONST P0=-0.8237728127; P1=-0.3831010665E-2; Q0=2.471319654; ln3over2=0.5493061443;
BIG=9.010913347; (* (ln(2)+(t+1)*ln(B))/2 where t=mantissa bits, B=base *)
VAR f, t: REAL;
BEGIN f:=ABS(x);
IF f>BIG THEN t:=ONE
ELSIF f>ln3over2 THEN t:=ONE-TWO/(exp(TWO*f)+ONE)
ELSIF f<Limit THEN t:=f
ELSE (* approximation from "Software Manual for the Elementary Functions" *)
t:=f*f; t:=t*(P1*t+P0)/(t+Q0); t:=f+f*t
END;
IF x<ZERO THEN RETURN -t ELSE RETURN t END
END tanh;
PROCEDURE arcsinh* (x: REAL): REAL;
(* arcsinh(x) is the arc hyperbolic sine of x. All arguments are legal. *)
BEGIN
IF ABS(x)>SqrtInfinity*HALF THEN l.ErrorHandler(HypInvTrigClipped);
IF x>ZERO THEN RETURN ln(SqrtInfinity) ELSE RETURN -ln(SqrtInfinity) END;
ELSIF x<ZERO THEN RETURN -ln(-x+sqrt(x*x+ONE))
ELSE RETURN ln(x+sqrt(x*x+ONE))
END
END arcsinh;
PROCEDURE arccosh* (x: REAL): REAL;
(* arccosh(x) is the arc hyperbolic cosine of x. All arguments greater than
or equal to 1 are legal. *)
BEGIN
IF x<ONE THEN l.ErrorHandler(IllegalHypInvTrig); RETURN ZERO
ELSIF x>SqrtInfinity*HALF THEN l.ErrorHandler(HypInvTrigClipped); RETURN ln(SqrtInfinity)
ELSE RETURN ln(x+sqrt(x*x-ONE))
END
END arccosh;
PROCEDURE arctanh* (x: REAL): REAL;
(* arctanh(x) is the arc hyperbolic tangent of x. |x| < 1 - sqrt(em), where
em is machine epsilon. Note that |x| must not be so close to 1 that the
result is less accurate than half precision. *)
CONST TanhLimit=0.999984991; (* Tanh(5.9) *)
VAR t: REAL;
BEGIN t:=ABS(x);
IF (t>=ONE) OR (t>(ONE-TWO*em)) THEN l.ErrorHandler(IllegalHypInvTrig);
IF x<ZERO THEN RETURN -TanhMax ELSE RETURN TanhMax END
ELSIF t>TanhLimit THEN l.ErrorHandler(LossOfAccuracy)
END;
RETURN arcsinh(x/sqrt(ONE-x*x))
END arctanh;
BEGIN
(* determine some fundamental constants used by hyperbolic trig functions *)
em:=l.ulp(ONE);
LnInfinity:=ln(huge);
LnSmall:=ln(miny);
SqrtInfinity:=sqrt(huge);
t:=l.pred(ONE)/sqrt(em); TanhMax:=ln(t+sqrt(t*t+ONE));
(* initialize some tables for the power() function a1[i]=2**((1-i)/16) *)
a1[1] :=ONE;
a1[2] :=S.VAL(REAL, 3F75257DH);
a1[3] :=S.VAL(REAL, 3F6AC0C7H);
a1[4] :=S.VAL(REAL, 3F60CCDFH);
a1[5] :=S.VAL(REAL, 3F5744FDH);
a1[6] :=S.VAL(REAL, 3F4E248CH);
a1[7] :=S.VAL(REAL, 3F45672AH);
a1[8] :=S.VAL(REAL, 3F3D08A4H);
a1[9] :=S.VAL(REAL, 3F3504F3H);
a1[10]:=S.VAL(REAL, 3F2D583FH);
a1[11]:=S.VAL(REAL, 3F25FED7H);
a1[12]:=S.VAL(REAL, 3F1EF532H);
a1[13]:=S.VAL(REAL, 3F1837F0H);
a1[14]:=S.VAL(REAL, 3F11C3D3H);
a1[15]:=S.VAL(REAL, 3F0B95C2H);
a1[16]:=S.VAL(REAL, 3F05AAC3H);
a1[17]:=HALF;
(* a2[i]=2**[(1-2i)/16] - a1[2i]; delta resolution *)
a2[1]:=S.VAL(REAL, 31A92436H);
a2[2]:=S.VAL(REAL, 336C2A95H);
a2[3]:=S.VAL(REAL, 31A8FC24H);
a2[4]:=S.VAL(REAL, 331F580CH);
a2[5]:=S.VAL(REAL, 336A42A1H);
a2[6]:=S.VAL(REAL, 32C12342H);
a2[7]:=S.VAL(REAL, 32E75624H);
a2[8]:=S.VAL(REAL, 32CF9890H)
END RealMath.
|