File: RealMath.Mod

package info (click to toggle)
oo2c32 1.5.0-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 8,748 kB
  • ctags: 5,415
  • sloc: ansic: 95,007; sh: 473; makefile: 344; perl: 57; lisp: 21
file content (609 lines) | stat: -rw-r--r-- 19,265 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
(*	$Id: RealMath.Mod,v 1.6 1999/09/02 13:19:17 acken Exp $	*)
MODULE RealMath;

(*
    RealMath - Target independent mathematical functions for REAL 
    (IEEE single-precision) numbers.
    
    Numerical approximations are taken from "Software Manual for the
    Elementary Functions" by Cody & Waite and "Computer Approximations"
    by Hart et al.    
    
    Copyright (C) 1995 Michael Griebling
 
    This module is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as 
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.
 
    This module is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.
 
    You should have received a copy of the GNU Lesser General Public
    License along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*)

IMPORT l := LowReal, S := SYSTEM;
 
CONST
  pi*   = 3.1415926535897932384626433832795028841972;
  exp1* = 2.7182818284590452353602874713526624977572;

  ZERO=0.0; ONE=1.0; HALF=0.5; TWO=2.0;  (* local constants *) 
  
  (* internally-used constants *)
  huge=l.large;                     (* largest number this package accepts *)
  miny=ONE/huge;                    (* smallest number this package accepts *)
  sqrtHalf=0.70710678118654752440;
  Limit=2.4414062E-4;               (* 2**(-MantBits/2) *)
  eps=2.9802322E-8;                 (* 2**(-MantBits-1) *)
  piInv=0.31830988618379067154;     (* 1/pi *)
  piByTwo=1.57079632679489661923132; 
  piByFour=0.78539816339744830962;  
  lnv=0.6931610107421875;           (* should be exact *)
  vbytwo=0.13830277879601902638E-4; (* used in sinh/cosh *)
  ln2Inv=1.44269504088896340735992468100189213;  
  
  (* error/exception codes *)
  NoError*=0; IllegalRoot*=1; IllegalLog*=2; Overflow*=3; IllegalPower*=4; IllegalLogBase*=5;
  IllegalTrig*=6; IllegalInvTrig*=7; HypInvTrigClipped*=8; IllegalHypInvTrig*=9;
  LossOfAccuracy*=10; Underflow*=11;

VAR
  a1: ARRAY 18 OF REAL; (* lookup table for power function *)
  a2: ARRAY 9 OF REAL;  (* lookup table for power function *)   
  em: REAL;             (* largest number such that 1+epsilon > 1.0 *) 
  LnInfinity: REAL;     (* natural log of infinity *)
  LnSmall: REAL;        (* natural log of very small number *)  
  SqrtInfinity: REAL;   (* square root of infinity *)
  TanhMax: REAL;        (* maximum Tanh value *)
  t: REAL;              (* internal variables *)
  
(* internally used support routines *)

PROCEDURE SinCos (x, y, sign: REAL): REAL;
  CONST
    ymax=9099;           (* ENTIER(pi*2**(MantBits/2)) *)
    r1=-0.1666665668E+0;
    r2= 0.8333025139E-2;
    r3=-0.1980741872E-3;
    r4= 0.2601903036E-5;
  VAR 
    n: LONGINT; xn, f, g: REAL; 
BEGIN
  IF y>=ymax THEN l.ErrorHandler(LossOfAccuracy); RETURN ZERO END;
  
  (* determine the reduced number *)
  n:=ENTIER(y*piInv+HALF); xn:=n;
  IF ODD(n) THEN sign:=-sign END;
  x:=ABS(x);
  IF x#y THEN xn:=xn-HALF END;
  
  (* fractional part of reduced number *)
  f:=SHORT(ABS(LONG(x)) - LONG(xn)*pi);
  
  (* Pre: |f| <= pi/2 *)
  IF ABS(f)<Limit THEN RETURN sign*f END;
  
  (* evaluate polynomial approximation of sin *)
  g:=f*f; g:=(((r4*g+r3)*g+r2)*g+r1)*g;
  g:=f+f*g;  (* don't use less accurate f(1+g) *)
  RETURN sign*g
END SinCos;

PROCEDURE div (x, y : LONGINT) : LONGINT;
(* corrected MOD function *)
BEGIN
  IF x < 0 THEN RETURN -ABS(x) DIV y ELSE RETURN x DIV y END
END div;
 
 
(* forward declarations *)
PROCEDURE^ arctan2* (xn, xd: REAL): REAL;
PROCEDURE^ sincos* (x: REAL; VAR Sin, Cos: REAL);

PROCEDURE round*(x: REAL): LONGINT;
  (* Returns the value of x rounded to the nearest integer *)
BEGIN
  IF x<ZERO THEN RETURN -ENTIER(HALF-x)
  ELSE RETURN ENTIER(x+HALF)
  END
END round;
 
PROCEDURE sqrt*(x: REAL): REAL;
  (* Returns the positive square root of x where x >= 0 *)
  CONST 
    P0=0.41731; P1=0.59016;
  VAR 
    xMant, yEst, z: REAL; xExp: INTEGER; 
BEGIN
  (* optimize zeros and check for illegal negative roots *)
  IF x=ZERO THEN RETURN ZERO END;
  IF x<ZERO THEN l.ErrorHandler(IllegalRoot); x:=-x END;
  
  (* reduce the input number to the range 0.5 <= x <= 1.0 *)
  xMant:=l.fraction(x)*HALF; xExp:=l.exponent(x)+1;
  
  (* initial estimate of the square root *)
  yEst:=P0+P1*xMant;
  
  (* perform two newtonian iterations *)
  z:=(yEst+xMant/yEst); yEst:=0.25*z+xMant/z;
  
  (* adjust for odd exponents *)
  IF ODD(xExp) THEN yEst:=yEst*sqrtHalf; INC(xExp) END;
  
  (* single Newtonian iteration to produce real number accuracy *)
  RETURN l.scale(yEst, xExp DIV 2)
END sqrt;

PROCEDURE exp*(x: REAL): REAL;
  (* Returns the exponential of x for x < Ln(MAX(REAL)) *)
  CONST 
    ln2=0.6931471805599453094172321D0;
    P0=0.24999999950E+0; P1=0.41602886268E-2; Q1=0.49987178778E-1;
  VAR xn, g, p, q, z: REAL; n: LONGINT;
BEGIN
  (* Ensure we detect overflows and return 0 for underflows *)
  IF x>=LnInfinity THEN l.ErrorHandler(Overflow); RETURN huge
  ELSIF x<LnSmall THEN l.ErrorHandler(Underflow); RETURN ZERO
  ELSIF ABS(x)<eps THEN RETURN ONE
  END;
  
  (* Decompose and scale the number *)
  n:=round(ln2Inv*x);
  xn:=n; g:=SHORT(LONG(x)-LONG(xn)*ln2);
  
  (* Calculate exp(g)/2 from "Software Manual for the Elementary Functions" *)
  z:=g*g; p:=(P1*z+P0)*g; q:=Q1*z+HALF;
  RETURN l.scale(HALF+p/(q-p), SHORT(n+1))
END exp;
  
PROCEDURE ln*(x: REAL): REAL;
  (* Returns the natural logarithm of x for x > 0 *)
  CONST
    c1=355.0/512.0; c2=-2.121944400546905827679E-4;
    A0=-0.5527074855E+0; B0=-0.6632718214E+1;
  VAR f, zn, zd, r, z, w, xn: REAL; n: INTEGER;
BEGIN
  (* ensure illegal inputs are trapped and handled *)
  IF x<=ZERO THEN l.ErrorHandler(IllegalLog); RETURN -huge END;
  
  (* reduce the range of the input *)
  f:=l.fraction(x)*HALF; n:=l.exponent(x)+1;
  IF f>sqrtHalf THEN zn:=(f-HALF)-HALF; zd:=f*HALF+HALF
  ELSE zn:=f-HALF; zd:=zn*HALF+HALF; DEC(n) 
  END;
  
  (* evaluate rational approximation from "Software Manual for the Elementary Functions" *)
  z:=zn/zd; w:=z*z; r:=z+z*(w*A0/(w+B0));
  
  (* scale the output *)
  xn:=n; 
  RETURN (xn*c2+r)+xn*c1  
END ln;
 
(* The angle in all trigonometric functions is measured in radians *)
 
PROCEDURE sin*(x: REAL): REAL;
  (* Returns the sine of x for all x *)
BEGIN
  IF x<ZERO THEN RETURN SinCos(x, -x, -ONE) 
  ELSE RETURN SinCos(x, x, ONE)
  END
END sin;
 
PROCEDURE cos*(x: REAL): REAL;
  (* Returns the cosine of x for all x *)
BEGIN
  RETURN SinCos(x, ABS(x)+piByTwo, ONE)
END cos;
 
PROCEDURE tan*(x: REAL): REAL;
  (* Returns the tangent of x where x cannot be an odd multiple of pi/2 *)
CONST
  ymax = 6434;  (* ENTIER(2**(MantBits/2)*pi/2) *)
  twoByPi = 0.63661977236758134308;
  P1=-0.958017723E-1; Q1=-0.429135777E+0; Q2=0.971685835E-2;
VAR
  n: LONGINT;
  y, xn, f, xnum, xden, g: REAL;
BEGIN
  (* check for error limits *)
  y:=ABS(x);
  IF y>ymax THEN l.ErrorHandler(LossOfAccuracy); RETURN ZERO END;
  
  (* determine n and the fraction f *)
  n:=round(x*twoByPi); xn:=n;
  f:=SHORT(LONG(x)-LONG(xn)*piByTwo);
  
  (* check for underflow *)
  IF ABS(f)<Limit THEN xnum:=f; xden:=ONE
  ELSE g:=f*f; xnum:=P1*g*f+f; xden:=(Q2*g+Q1)*g+HALF+HALF
  END;
  
  (* find the final result *)
  IF ODD(n) THEN RETURN xden/(-xnum)
  ELSE RETURN xnum/xden
  END
END tan;

PROCEDURE asincos (x: REAL; flag: LONGINT; VAR i: LONGINT; VAR res: REAL);
CONST
  P1=0.933935835E+0; P2=-0.504400557E+0;
  Q0=0.560363004E+1; Q1=-0.554846723E+1;
VAR
  y, g, r: REAL;
BEGIN
  y:=ABS(x);
  IF y>HALF THEN
    i:=1-flag;
    IF y>ONE THEN l.ErrorHandler(IllegalInvTrig); res:=huge; RETURN END;
    
    (* reduce the input argument *)
    g:=(ONE-y)*HALF; r:=-sqrt(g); y:=r+r; 
    
    (* compute approximation *)
    r:=((P2*g+P1)*g)/((g+Q1)*g+Q0);
    res:=y+(y*r)
  ELSE
    i:=flag;
    IF y<Limit THEN res:=y
    ELSE
      g:=y*y;
      
      (* compute approximation *)
      g:=((P2*g+P1)*g)/((g+Q1)*g+Q0);
      res:=y+y*g      
    END
  END
END asincos;
 
PROCEDURE arcsin*(x: REAL): REAL;
  (* Returns the arcsine of x, in the range [-pi/2, pi/2] where -1 <= x <= 1 *)
VAR
  res: REAL; i: LONGINT;
BEGIN
  asincos(x, 0, i, res);
  IF l.err#0 THEN RETURN res END;
  
  (* adjust result for the correct quadrant *)
  IF i=1 THEN res:=piByFour+(piByFour+res) END;
  IF x<0 THEN res:=-res END;
  RETURN res  
END arcsin;
 
PROCEDURE arccos*(x: REAL): REAL;
  (* Returns the arccosine of x, in the range [0, pi] where -1 <= x <= 1 *)
VAR
  res: REAL; i: LONGINT;
BEGIN
  asincos(x, 1, i, res);
  IF l.err#0 THEN RETURN res END;
  
  (* adjust result for the correct quadrant *)
  IF x<0 THEN
    IF i=0 THEN res:=piByTwo+(piByTwo+res)
    ELSE res:=piByFour+(piByFour+res)
    END
  ELSE
    IF i=1 THEN res:=piByFour+(piByFour-res) 
    ELSE res:=-res
    END;    
  END;
  RETURN res  
END arccos;

PROCEDURE atan(f: REAL): REAL;
(* internal arctan algorithm *)
CONST
  rt32=0.26794919243112270647;
  rt3=1.73205080756887729353;
  a=rt3-ONE;
  P0=-0.4708325141E+0; P1=-0.5090958253E-1; Q0=0.1412500740E+1;
  piByThree=1.04719755119659774615;
  piBySix=0.52359877559829887308;
VAR
  n: LONGINT; res, g: REAL;
BEGIN
  IF f>ONE THEN f:=ONE/f; n:=2
  ELSE n:=0
  END;
  
  (* check if f should be scaled *)
  IF f>rt32 THEN f:=(((a*f-HALF)-HALF)+f)/(rt3+f); INC(n) END;
  
  (* check for underflow *)
  IF ABS(f)<Limit THEN res:=f
  ELSE
    g:=f*f; res:=(P1*g+P0)*g/(g+Q0); res:=f+f*res
  END;
  IF n>1 THEN res:=-res END;
  CASE n OF
  | 1: res:=res+piBySix
  | 2: res:=res+piByTwo
  | 3: res:=res+piByThree
  | ELSE (* do nothing *)
  END;
  RETURN res
END atan;
 
PROCEDURE arctan*(x: REAL): REAL;
  (* Returns the arctangent of x, in the range [-pi/2, pi/2] for all x *)
BEGIN
  IF x<0 THEN RETURN -atan(-x)
  ELSE RETURN atan(x)
  END
END arctan;
 
PROCEDURE power*(base, exponent: REAL): REAL;
  (* Returns the value of the number base raised to the power exponent 
     for base > 0 *)
  CONST P1=0.83357541E-1; K=0.4426950409;
    Q1=0.69314675; Q2=0.24018510; Q3=0.54360383E-1;
    OneOver16=0.0625; XMAX=16*(l.expoMax+1)-1; XMIN=16*l.expoMin;
  VAR z, g, R, v, u2, u1, w1, w2: REAL; w: LONGREAL; 
    m, p, i: INTEGER; mp, pp, iw1: LONGINT; 
BEGIN
  (* handle all possible error conditions *)
  IF base<=ZERO THEN
    IF base#ZERO THEN l.ErrorHandler(IllegalPower); base:=-base
    ELSIF exponent>ZERO THEN RETURN ZERO  
    ELSE l.ErrorHandler(IllegalPower); RETURN huge
    END
  END;
  
  (* extract the exponent of base to m and clear exponent of base in g *)
  g:=l.fraction(base)*HALF; m:=l.exponent(base)+1;
  
  (* determine p table offset with an unrolled binary search *)
  p:=1;
  IF g<=a1[9] THEN p:=9 END;
  IF g<=a1[p+4] THEN INC(p, 4) END;
  IF g<=a1[p+2] THEN INC(p, 2) END;
  
  (* compute scaled z so that |z| <= 0.044 *)
  z:=((g-a1[p+1])-a2[(p+1) DIV 2])/(g+a1[p+1]); z:=z+z;
  
  (* approximation for log2(z) from "Software Manual for the Elementary Functions" *)
  v:=z*z; R:=P1*v*z; R:=R+K*R; u2:=(R+z*K)+z;
  u1:=(m*16-p)*OneOver16; w:=LONG(exponent)*(LONG(u1)+LONG(u2)); (* need extra precision *)
  
  (* calculations below were modified to work properly -- incorrect in cited reference? *)
  iw1:=ENTIER(16*w); w1:=iw1*OneOver16; w2:=SHORT(w-w1);

  (* check for overflow/underflow *)
  IF iw1>XMAX THEN l.ErrorHandler(Overflow); RETURN huge
  ELSIF iw1<XMIN THEN l.ErrorHandler(Underflow); RETURN ZERO
  END;
  
  (* final approximation 2**w2-1 where -0.0625 <= w2 <= 0 *)
  IF w2>ZERO THEN INC(iw1); w2:=w2-OneOver16 END; IF iw1<0 THEN i:=0 ELSE i:=1 END;
  mp:=div(iw1, 16)+i; pp:=16*mp-iw1; z:=((Q3*w2+Q2)*w2+Q1)*w2; z:=a1[pp+1]+a1[pp+1]*z; 
  RETURN l.scale(z, SHORT(mp))
END power;
  
PROCEDURE IsRMathException*(): BOOLEAN;
  (* Returns TRUE if the current coroutine is in the exceptional execution state
     because of the raising of the RealMath exception; otherwise returns FALSE.
  *)
BEGIN
  RETURN FALSE
END IsRMathException;

 
(* 
   Following routines are provided as extensions to the ISO standard.
   They are either used as the basis of other functions or provide
   useful functions which are not part of the ISO standard.   
*)

PROCEDURE log* (x, base: REAL): REAL;
(* log(x,base) is the logarithm of x base 'base'.  All positive arguments are 
   allowed but base > 0 and base # 1 *)
BEGIN
  (* log(x, base) = ln(x) / ln(base) *)
  IF base<=ZERO THEN l.ErrorHandler(IllegalLogBase); RETURN -huge
  ELSE RETURN ln(x)/ln(base)
  END
END log;

PROCEDURE ipower* (x: REAL; base: INTEGER): REAL;             
(* ipower(x, base) returns the x to the integer power base where Log2(x) < expoMax *)
  VAR Exp: INTEGER; y: REAL; neg: BOOLEAN; 

  PROCEDURE Adjust(xadj: REAL): REAL;
  BEGIN
    IF (x<ZERO)&ODD(base) THEN RETURN -xadj ELSE RETURN xadj END
  END Adjust;

BEGIN
  (* handle all possible error conditions *)
  IF base=0 THEN RETURN ONE (* x**0 = 1 *)
  ELSIF ABS(x)<miny THEN 
    IF base>0 THEN RETURN ZERO ELSE l.ErrorHandler(Overflow); RETURN Adjust(huge) END
  END;

  (* trap potential overflows and underflows *)
  Exp:=(l.exponent(x)+1)*base; y:=LnInfinity*ln2Inv; 
  IF Exp>y THEN l.ErrorHandler(Overflow); RETURN Adjust(huge)
  ELSIF Exp<-y THEN RETURN ZERO
  END;
  
  (* compute x**base using an optimised algorithm from Knuth, slightly 
     altered : p442, The Art Of Computer Programming, Vol 2 *)
  y:=ONE; IF base<0 THEN neg:=TRUE; base := -base ELSE neg:= FALSE END;
  LOOP
    IF ODD(base) THEN y:=y*x END;
    base:=base DIV 2; IF base=0 THEN EXIT END;
    x:=x*x;
  END;
  IF neg THEN RETURN ONE/y ELSE RETURN y END
END ipower; 

PROCEDURE sincos* (x: REAL; VAR Sin, Cos: REAL);
(* More efficient sin/cos implementation if both values are needed. *)
BEGIN
  Sin:=sin(x); Cos:=sqrt(ONE-Sin*Sin)
END sincos; 

PROCEDURE arctan2* (xn, xd: REAL): REAL;
(* arctan2(xn,xd) is the quadrant-correct arc tangent atan(xn/xd).  If the 
   denominator xd is zero, then the numerator xn must not be zero.  All
   arguments are legal except xn = xd = 0. *)
VAR
  res: REAL; xpdiff: LONGINT;
BEGIN
  (* check for error conditions *)
  IF xd=ZERO THEN
    IF xn=ZERO THEN l.ErrorHandler(IllegalTrig); RETURN ZERO
    ELSIF xn<0 THEN RETURN -piByTwo 
    ELSE RETURN piByTwo
    END;
  ELSE
    xpdiff:=l.exponent(xn)-l.exponent(xd);
    IF ABS(xpdiff)>=l.expoMax-3 THEN 
      (* overflow detected *)
      IF xn<0 THEN RETURN -piByTwo
      ELSE RETURN piByTwo
      END
    ELSE 
      res:=ABS(xn/xd);
      IF res#ZERO THEN res:=atan(res) END;
      IF xd<ZERO THEN res:=pi-res END;
      IF xn<ZERO THEN RETURN -res
      ELSE RETURN res
      END
    END
  END
END arctan2;

PROCEDURE sinh* (x: REAL): REAL;
(* sinh(x) is the hyperbolic sine of x.  The argument x must not be so large 
   that exp(|x|) overflows. *)
  CONST P0=-7.13793159; P1=-0.190333399; Q0=-42.8277109; 
  VAR y, f: REAL;
BEGIN y:=ABS(x);
  IF y<=ONE THEN (* handle small arguments *)
    IF y<Limit THEN RETURN x END;
    
    (* use approximation from "Software Manual for the Elementary Functions" *)
    f:=y*y; y:=f*((f*P1+P0)/(f+Q0)); RETURN x+x*y
  ELSIF y>LnInfinity THEN (* handle exp overflows *)
    y:=y-lnv;
    IF y>LnInfinity-lnv+0.69 THEN l.ErrorHandler(Overflow); 
      IF x>ZERO THEN RETURN huge ELSE RETURN -huge END
    ELSE f:=exp(y); f:=f+f*vbytwo (* don't change to f(1+vbytwo) *)
    END
  ELSE f:=exp(y); f:=(f-ONE/f)*HALF
  END;
  
  (* reach here when 1 < ABS(x) < LnInfinity-lnv+0.69 *) 
  IF x>ZERO THEN RETURN f ELSE RETURN -f END  
END sinh;
   
PROCEDURE cosh* (x: REAL): REAL;
(* cosh(x) is the hyperbolic cosine of x.  The argument x must not be so large
   that exp(|x|) overflows. *)   
  VAR y, f: REAL;
BEGIN y:=ABS(x);
  IF y>LnInfinity THEN (* handle exp overflows *)
    y:=y-lnv;
    IF y>LnInfinity-lnv+0.69 THEN l.ErrorHandler(Overflow); 
      IF x>ZERO THEN RETURN huge ELSE RETURN -huge END
    ELSE f:=exp(y); RETURN f+f*vbytwo (* don't change to f(1+vbytwo) *)
    END
  ELSE f:=exp(y); RETURN (f+ONE/f)*HALF
  END
END cosh;
   
PROCEDURE tanh* (x: REAL): REAL;
(* tanh(x) is the hyperbolic tangent of x.  All arguments are legal. *)
  CONST P0=-0.8237728127; P1=-0.3831010665E-2; Q0=2.471319654; ln3over2=0.5493061443; 
    BIG=9.010913347; (* (ln(2)+(t+1)*ln(B))/2 where t=mantissa bits, B=base *)
  VAR f, t: REAL;
BEGIN f:=ABS(x);
  IF f>BIG THEN t:=ONE
  ELSIF f>ln3over2 THEN t:=ONE-TWO/(exp(TWO*f)+ONE)
  ELSIF f<Limit THEN t:=f
  ELSE (* approximation from "Software Manual for the Elementary Functions" *)
    t:=f*f; t:=t*(P1*t+P0)/(t+Q0); t:=f+f*t
  END;
  IF x<ZERO THEN RETURN -t ELSE RETURN t END
END tanh;

PROCEDURE arcsinh* (x: REAL): REAL;
(* arcsinh(x) is the arc hyperbolic sine of x.  All arguments are legal. *)
BEGIN
  IF ABS(x)>SqrtInfinity*HALF THEN l.ErrorHandler(HypInvTrigClipped);
    IF x>ZERO THEN RETURN ln(SqrtInfinity) ELSE RETURN -ln(SqrtInfinity) END;
  ELSIF x<ZERO THEN RETURN -ln(-x+sqrt(x*x+ONE))
  ELSE RETURN ln(x+sqrt(x*x+ONE))
  END
END arcsinh;

PROCEDURE arccosh* (x: REAL): REAL;
(* arccosh(x) is the arc hyperbolic cosine of x.  All arguments greater than 
   or equal to 1 are legal. *)
BEGIN
  IF x<ONE THEN l.ErrorHandler(IllegalHypInvTrig); RETURN ZERO
  ELSIF x>SqrtInfinity*HALF THEN l.ErrorHandler(HypInvTrigClipped); RETURN ln(SqrtInfinity)
  ELSE RETURN ln(x+sqrt(x*x-ONE))
  END
END arccosh;
   
PROCEDURE arctanh* (x: REAL): REAL;
(* arctanh(x) is the arc hyperbolic tangent of x.  |x| < 1 - sqrt(em), where 
   em is machine epsilon.  Note that |x| must not be so close to 1 that the 
   result is less accurate than half precision. *)
  CONST TanhLimit=0.999984991;  (* Tanh(5.9) *)
  VAR t: REAL;
BEGIN t:=ABS(x);
  IF (t>=ONE) OR (t>(ONE-TWO*em)) THEN l.ErrorHandler(IllegalHypInvTrig);
    IF x<ZERO THEN RETURN -TanhMax ELSE RETURN TanhMax END
  ELSIF t>TanhLimit THEN l.ErrorHandler(LossOfAccuracy)
  END;
  RETURN arcsinh(x/sqrt(ONE-x*x))
END arctanh;

BEGIN
  (* determine some fundamental constants used by hyperbolic trig functions *)
  em:=l.ulp(ONE);
  LnInfinity:=ln(huge);
  LnSmall:=ln(miny);  
  SqrtInfinity:=sqrt(huge);
  t:=l.pred(ONE)/sqrt(em); TanhMax:=ln(t+sqrt(t*t+ONE));
  
  (* initialize some tables for the power() function a1[i]=2**((1-i)/16) *)
  a1[1] :=ONE;
  a1[2] :=S.VAL(REAL, 3F75257DH);
  a1[3] :=S.VAL(REAL, 3F6AC0C7H);
  a1[4] :=S.VAL(REAL, 3F60CCDFH);
  a1[5] :=S.VAL(REAL, 3F5744FDH);
  a1[6] :=S.VAL(REAL, 3F4E248CH);
  a1[7] :=S.VAL(REAL, 3F45672AH); 
  a1[8] :=S.VAL(REAL, 3F3D08A4H);
  a1[9] :=S.VAL(REAL, 3F3504F3H);
  a1[10]:=S.VAL(REAL, 3F2D583FH);
  a1[11]:=S.VAL(REAL, 3F25FED7H); 
  a1[12]:=S.VAL(REAL, 3F1EF532H);
  a1[13]:=S.VAL(REAL, 3F1837F0H);
  a1[14]:=S.VAL(REAL, 3F11C3D3H);
  a1[15]:=S.VAL(REAL, 3F0B95C2H); 
  a1[16]:=S.VAL(REAL, 3F05AAC3H);
  a1[17]:=HALF;
  
  (* a2[i]=2**[(1-2i)/16] - a1[2i]; delta resolution *)
  a2[1]:=S.VAL(REAL, 31A92436H);
  a2[2]:=S.VAL(REAL, 336C2A95H);
  a2[3]:=S.VAL(REAL, 31A8FC24H);
  a2[4]:=S.VAL(REAL, 331F580CH);
  a2[5]:=S.VAL(REAL, 336A42A1H);
  a2[6]:=S.VAL(REAL, 32C12342H);
  a2[7]:=S.VAL(REAL, 32E75624H);
  a2[8]:=S.VAL(REAL, 32CF9890H)
END RealMath.