File: ComplexMath.Mod

package info (click to toggle)
oo2c64 1.5.0-1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 8,904 kB
  • ctags: 5,775
  • sloc: ansic: 97,209; sh: 473; makefile: 344; perl: 57; lisp: 21
file content (274 lines) | stat: -rw-r--r-- 7,697 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
(*	$Id: ComplexMath.Mod,v 1.5 1999/09/02 13:05:36 acken Exp $	*)
MODULE ComplexMath;
 
 (*
    ComplexMath - Mathematical functions for the type COMPLEX.   
    
    Copyright (C) 1995-1996 Michael Griebling
 
    This module is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as 
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.
 
    This module is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.
 
    You should have received a copy of the GNU Lesser General Public
    License along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*)
  
IMPORT m := RealMath;
  
TYPE
  COMPLEX * = POINTER TO COMPLEXDesc;
  COMPLEXDesc = RECORD
    r, i : REAL
  END;
  
CONST
  ZERO=0.0; HALF=0.5; ONE=1.0; TWO=2.0;
  
VAR
  i-, one-, zero- : COMPLEX;
  
PROCEDURE CMPLX * (r, i: REAL): COMPLEX;
VAR c: COMPLEX;
BEGIN
  NEW(c); c.r:=r; c.i:=i;
  RETURN c
END CMPLX;

(* 
   NOTE: This function provides the only way
   of reliably assigning COMPLEX numbers.  DO 
   NOT use ` a := b' where a, b are COMPLEX!
 *)
PROCEDURE Copy * (z: COMPLEX): COMPLEX;
BEGIN
  RETURN CMPLX(z.r, z.i)
END Copy;

PROCEDURE RealPart * (z: COMPLEX): REAL;
BEGIN
  RETURN z.r
END RealPart;

PROCEDURE ImagPart * (z: COMPLEX): REAL;
BEGIN
  RETURN z.i
END ImagPart;

PROCEDURE add * (z1, z2: COMPLEX): COMPLEX;
BEGIN
  RETURN CMPLX(z1.r+z2.r, z1.i+z2.i)
END add;

PROCEDURE sub * (z1, z2: COMPLEX): COMPLEX;
BEGIN
  RETURN CMPLX(z1.r-z2.r, z1.i-z2.i)
END sub;

PROCEDURE mul * (z1, z2: COMPLEX): COMPLEX;
BEGIN
  RETURN CMPLX(z1.r*z2.r-z1.i*z2.i, z1.r*z2.i+z1.i*z2.r)
END mul;
  
PROCEDURE div * (z1, z2: COMPLEX): COMPLEX;
  VAR d, h: REAL;
BEGIN
  (* Note: this algorith avoids overflow by avoiding
     multiplications and using divisions instead so that:
     
     Re(z1/z2) = (z1.r*z2.r+z1.i*z2.i)/(z2.r^2+z2.i^2)
               = (z1.r+z1.i*z2.i/z2.r)/(z2.r+z2.i^2/z2.r)
               = (z1.r+h*z1.i)/(z2.r+h*z2.i)
     Im(z1/z2) = (z1.i*z2.r-z1.r*z2.i)/(z2.r^2+z2.i^2)
               = (z1.i-z1.r*z2.i/z2.r)/(z2.r+z2.i^2/z2.r)
               = (z1.i-h*z1.r)/(z2.r+h*z2.i)
               
     where h=z2.i/z2.r, provided z2.i<=z2.r and similarly 
     for z2.i>z2.r we have:
     
     Re(z1/z2) = (h*z1.r+z1.i)/(h*z2.r+z2.i)
     Im(z1/z2) = (h*z1.i-z1.r)/(h*z2.r+z2.i) 
     
     where h=z2.r/z2.i *)
     
  (* we always guarantee h<=1 *)
  IF ABS(z2.r)>ABS(z2.i) THEN 
    h:=z2.i/z2.r; d:=z2.r+h*z2.i;
    RETURN CMPLX((z1.r+h*z1.i)/d, (z1.i-h*z1.r)/d)
  ELSE
    h:=z2.r/z2.i; d:=h*z2.r+z2.i;
    RETURN CMPLX((h*z1.r+z1.i)/d, (h*z1.i-z1.r)/d)
  END
END div;
  
PROCEDURE abs * (z: COMPLEX): REAL;
  (* Returns the length of z *)
VAR
  r, i, h: REAL;
BEGIN
  (* Note: this algorithm avoids overflow by avoiding
     multiplications and using divisions instead so that:
           
     abs(z) =  sqrt(z.r*z.r+z.i*z.i)
            =  sqrt(z.r^2*(1+(z.i/z.r)^2))
            =  z.r*sqrt(1+(z.i/z.r)^2)
           
     where z.i/z.r <= 1.0 by swapping z.r & z.i so that
     for z.r>z.i we have z.r*sqrt(1+(z.i/z.r)^2) and
     otherwise we have z.i*sqrt(1+(z.r/z.i)^2) *)
  r:=ABS(z.r); i:=ABS(z.i);
  IF i>r THEN h:=i; i:=r; r:=h END; (* guarantees i<=r *)
  IF i=ZERO THEN RETURN r END;      (* i=0, so sqrt(0+r^2)=r *)
  h:=i/r;
  RETURN r*m.sqrt(ONE+h*h)          (* r*sqrt(1+(i/r)^2) *)
END abs;
 
PROCEDURE arg * (z: COMPLEX): REAL;
  (* Returns the angle that z subtends to the positive real axis, in the range [-pi, pi] *)
BEGIN
  RETURN m.arctan2(z.i, z.r)
END arg;
  
PROCEDURE conj * (z: COMPLEX): COMPLEX;
  (* Returns the complex conjugate of z *)
BEGIN
  RETURN CMPLX(z.r, -z.i)
END conj;
  
PROCEDURE power * (base: COMPLEX; exponent: REAL): COMPLEX;
  (* Returns the value of the number base raised to the power exponent *)
VAR c, s, r: REAL;
BEGIN
  m.sincos(arg(base)*exponent, s, c); r:=m.power(abs(base), exponent);
  RETURN CMPLX(c*r, s*r)
END power;
 
PROCEDURE sqrt * (z: COMPLEX): COMPLEX;
  (* Returns the principal square root of z, with arg in the range [-pi/2, pi/2] *)
VAR u, v: REAL;
BEGIN
  (* Note: the following algorithm is more efficient since
     it doesn't require a sincos or arctan evaluation:
     
     Re(sqrt(z)) = sqrt((abs(z)+z.r)/2), Im(sqrt(z)) = +/-sqrt((abs(z)-z.r)/2)
                 = u                                 = +/-v
       
     where z.r >= 0 and z.i = 2*u*v and unknown sign is sign of z.i *)
     
  (* initially force z.r >= 0 to calculate u, v *)
  u:=m.sqrt((abs(z)+ABS(z.r))*HALF); 
  IF z.i#ZERO THEN v:=(HALF*z.i)/u ELSE v:=ZERO END; (* slight optimization *)
  
  (* adjust u, v for the signs of z.r and z.i *)
  IF z.r>=ZERO THEN RETURN CMPLX(u, v)    (* no change *)
  ELSIF z.i>=ZERO THEN RETURN CMPLX(v, u) (* z.r<0 so swap u, v *)
  ELSE RETURN CMPLX(-v, -u)               (* z.r<0, z.i<0 *)
  END
END sqrt;
 
PROCEDURE exp * (z: COMPLEX): COMPLEX;
  (* Returns the complex exponential of z *)
VAR c, s, e: REAL; 
BEGIN
  m.sincos(z.i, s, c); e:=m.exp(z.r);
  RETURN CMPLX(e*c, e*s)
END exp;
 
PROCEDURE ln * (z: COMPLEX): COMPLEX;
  (* Returns the principal value of the natural logarithm of z *)
BEGIN
  RETURN CMPLX(m.ln(abs(z)), arg(z))
END ln;
 
PROCEDURE sin * (z: COMPLEX): COMPLEX;
  (* Returns the sine of z *)
  VAR s, c: REAL;
BEGIN
  m.sincos(z.r, s, c);
  RETURN CMPLX(s*m.cosh(z.i), c*m.sinh(z.i))
END sin;
 
PROCEDURE cos * (z: COMPLEX): COMPLEX;
  (* Returns the cosine of z *)
  VAR s, c: REAL;
BEGIN
  m.sincos(z.r, s, c);
  RETURN CMPLX(c*m.cosh(z.i), -s*m.sinh(z.i))
END cos;
 
PROCEDURE tan * (z: COMPLEX): COMPLEX;
  (* Returns the tangent of z *)
  VAR s, c, y, d: REAL;
BEGIN
  m.sincos(TWO*z.r, s, c); 
  y:=TWO*z.i; d:=c+m.cosh(y);
  RETURN CMPLX(s/d, m.sinh(y)/d)
END tan;

PROCEDURE CalcAlphaBeta(z: COMPLEX; VAR a, b: REAL);
  VAR x, x2, y, r, t: REAL;
BEGIN x:=z.r+ONE; x:=x*x; y:=z.i*z.i;
  x2:=z.r-ONE; x2:=x2*x2;
  r:=m.sqrt(x+y); t:=m.sqrt(x2+y);
  a:=HALF*(r+t); b:=HALF*(r-t);
END CalcAlphaBeta;
 
PROCEDURE arcsin * (z: COMPLEX): COMPLEX;
  (* Returns the arcsine of z *)
  VAR a, b: REAL;
BEGIN
  CalcAlphaBeta(z, a, b);
  RETURN CMPLX(m.arcsin(b), m.ln(a+m.sqrt(a*a-1)))
END arcsin;
 
PROCEDURE arccos * (z: COMPLEX): COMPLEX;
  (* Returns the arccosine of z *)
  VAR a, b: REAL;
BEGIN
  CalcAlphaBeta(z, a, b);
  RETURN CMPLX(m.arccos(b), -m.ln(a+m.sqrt(a*a-1)))
END arccos;
 
PROCEDURE arctan * (z: COMPLEX): COMPLEX;
  (* Returns the arctangent of z *)
  VAR x, y, yp, x2, y2: REAL;
BEGIN
  x:=TWO*z.r; y:=z.i+ONE; y:=y*y;
  yp:=z.i-ONE; yp:=yp*yp;
  x2:=z.r*z.r; y2:=z.i*z.i;
  RETURN CMPLX(HALF*m.arctan(x/(ONE-x2-y2)), 0.25*m.ln((x2+y)/(x2+yp)))
END arctan;
 
PROCEDURE polarToComplex * (abs, arg: REAL): COMPLEX;
  (* Returns the complex number with the specified polar coordinates *)
BEGIN
  RETURN CMPLX(abs*m.cos(arg), abs*m.sin(arg))
END polarToComplex;
 
PROCEDURE scalarMult * (scalar: REAL; z: COMPLEX): COMPLEX;
  (* Returns the scalar product of scalar with z *)
BEGIN
  RETURN CMPLX(z.r*scalar, z.i*scalar)
END scalarMult;
 
PROCEDURE IsCMathException * (): BOOLEAN;
  (* Returns TRUE if the current coroutine is in the exceptional execution state
     because of the ComplexMath exception; otherwise returns FALSE.
  *)
BEGIN
  RETURN FALSE
END IsCMathException;

BEGIN
  i:=CMPLX (ZERO, ONE);
  one:=CMPLX (ONE, ZERO);
  zero:=CMPLX (ZERO, ZERO)
END ComplexMath.