1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
(* $Id: ComplexMath.Mod,v 1.5 1999/09/02 13:05:36 acken Exp $ *)
MODULE ComplexMath;
(*
ComplexMath - Mathematical functions for the type COMPLEX.
Copyright (C) 1995-1996 Michael Griebling
This module is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This module is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
IMPORT m := RealMath;
TYPE
COMPLEX * = POINTER TO COMPLEXDesc;
COMPLEXDesc = RECORD
r, i : REAL
END;
CONST
ZERO=0.0; HALF=0.5; ONE=1.0; TWO=2.0;
VAR
i-, one-, zero- : COMPLEX;
PROCEDURE CMPLX * (r, i: REAL): COMPLEX;
VAR c: COMPLEX;
BEGIN
NEW(c); c.r:=r; c.i:=i;
RETURN c
END CMPLX;
(*
NOTE: This function provides the only way
of reliably assigning COMPLEX numbers. DO
NOT use ` a := b' where a, b are COMPLEX!
*)
PROCEDURE Copy * (z: COMPLEX): COMPLEX;
BEGIN
RETURN CMPLX(z.r, z.i)
END Copy;
PROCEDURE RealPart * (z: COMPLEX): REAL;
BEGIN
RETURN z.r
END RealPart;
PROCEDURE ImagPart * (z: COMPLEX): REAL;
BEGIN
RETURN z.i
END ImagPart;
PROCEDURE add * (z1, z2: COMPLEX): COMPLEX;
BEGIN
RETURN CMPLX(z1.r+z2.r, z1.i+z2.i)
END add;
PROCEDURE sub * (z1, z2: COMPLEX): COMPLEX;
BEGIN
RETURN CMPLX(z1.r-z2.r, z1.i-z2.i)
END sub;
PROCEDURE mul * (z1, z2: COMPLEX): COMPLEX;
BEGIN
RETURN CMPLX(z1.r*z2.r-z1.i*z2.i, z1.r*z2.i+z1.i*z2.r)
END mul;
PROCEDURE div * (z1, z2: COMPLEX): COMPLEX;
VAR d, h: REAL;
BEGIN
(* Note: this algorith avoids overflow by avoiding
multiplications and using divisions instead so that:
Re(z1/z2) = (z1.r*z2.r+z1.i*z2.i)/(z2.r^2+z2.i^2)
= (z1.r+z1.i*z2.i/z2.r)/(z2.r+z2.i^2/z2.r)
= (z1.r+h*z1.i)/(z2.r+h*z2.i)
Im(z1/z2) = (z1.i*z2.r-z1.r*z2.i)/(z2.r^2+z2.i^2)
= (z1.i-z1.r*z2.i/z2.r)/(z2.r+z2.i^2/z2.r)
= (z1.i-h*z1.r)/(z2.r+h*z2.i)
where h=z2.i/z2.r, provided z2.i<=z2.r and similarly
for z2.i>z2.r we have:
Re(z1/z2) = (h*z1.r+z1.i)/(h*z2.r+z2.i)
Im(z1/z2) = (h*z1.i-z1.r)/(h*z2.r+z2.i)
where h=z2.r/z2.i *)
(* we always guarantee h<=1 *)
IF ABS(z2.r)>ABS(z2.i) THEN
h:=z2.i/z2.r; d:=z2.r+h*z2.i;
RETURN CMPLX((z1.r+h*z1.i)/d, (z1.i-h*z1.r)/d)
ELSE
h:=z2.r/z2.i; d:=h*z2.r+z2.i;
RETURN CMPLX((h*z1.r+z1.i)/d, (h*z1.i-z1.r)/d)
END
END div;
PROCEDURE abs * (z: COMPLEX): REAL;
(* Returns the length of z *)
VAR
r, i, h: REAL;
BEGIN
(* Note: this algorithm avoids overflow by avoiding
multiplications and using divisions instead so that:
abs(z) = sqrt(z.r*z.r+z.i*z.i)
= sqrt(z.r^2*(1+(z.i/z.r)^2))
= z.r*sqrt(1+(z.i/z.r)^2)
where z.i/z.r <= 1.0 by swapping z.r & z.i so that
for z.r>z.i we have z.r*sqrt(1+(z.i/z.r)^2) and
otherwise we have z.i*sqrt(1+(z.r/z.i)^2) *)
r:=ABS(z.r); i:=ABS(z.i);
IF i>r THEN h:=i; i:=r; r:=h END; (* guarantees i<=r *)
IF i=ZERO THEN RETURN r END; (* i=0, so sqrt(0+r^2)=r *)
h:=i/r;
RETURN r*m.sqrt(ONE+h*h) (* r*sqrt(1+(i/r)^2) *)
END abs;
PROCEDURE arg * (z: COMPLEX): REAL;
(* Returns the angle that z subtends to the positive real axis, in the range [-pi, pi] *)
BEGIN
RETURN m.arctan2(z.i, z.r)
END arg;
PROCEDURE conj * (z: COMPLEX): COMPLEX;
(* Returns the complex conjugate of z *)
BEGIN
RETURN CMPLX(z.r, -z.i)
END conj;
PROCEDURE power * (base: COMPLEX; exponent: REAL): COMPLEX;
(* Returns the value of the number base raised to the power exponent *)
VAR c, s, r: REAL;
BEGIN
m.sincos(arg(base)*exponent, s, c); r:=m.power(abs(base), exponent);
RETURN CMPLX(c*r, s*r)
END power;
PROCEDURE sqrt * (z: COMPLEX): COMPLEX;
(* Returns the principal square root of z, with arg in the range [-pi/2, pi/2] *)
VAR u, v: REAL;
BEGIN
(* Note: the following algorithm is more efficient since
it doesn't require a sincos or arctan evaluation:
Re(sqrt(z)) = sqrt((abs(z)+z.r)/2), Im(sqrt(z)) = +/-sqrt((abs(z)-z.r)/2)
= u = +/-v
where z.r >= 0 and z.i = 2*u*v and unknown sign is sign of z.i *)
(* initially force z.r >= 0 to calculate u, v *)
u:=m.sqrt((abs(z)+ABS(z.r))*HALF);
IF z.i#ZERO THEN v:=(HALF*z.i)/u ELSE v:=ZERO END; (* slight optimization *)
(* adjust u, v for the signs of z.r and z.i *)
IF z.r>=ZERO THEN RETURN CMPLX(u, v) (* no change *)
ELSIF z.i>=ZERO THEN RETURN CMPLX(v, u) (* z.r<0 so swap u, v *)
ELSE RETURN CMPLX(-v, -u) (* z.r<0, z.i<0 *)
END
END sqrt;
PROCEDURE exp * (z: COMPLEX): COMPLEX;
(* Returns the complex exponential of z *)
VAR c, s, e: REAL;
BEGIN
m.sincos(z.i, s, c); e:=m.exp(z.r);
RETURN CMPLX(e*c, e*s)
END exp;
PROCEDURE ln * (z: COMPLEX): COMPLEX;
(* Returns the principal value of the natural logarithm of z *)
BEGIN
RETURN CMPLX(m.ln(abs(z)), arg(z))
END ln;
PROCEDURE sin * (z: COMPLEX): COMPLEX;
(* Returns the sine of z *)
VAR s, c: REAL;
BEGIN
m.sincos(z.r, s, c);
RETURN CMPLX(s*m.cosh(z.i), c*m.sinh(z.i))
END sin;
PROCEDURE cos * (z: COMPLEX): COMPLEX;
(* Returns the cosine of z *)
VAR s, c: REAL;
BEGIN
m.sincos(z.r, s, c);
RETURN CMPLX(c*m.cosh(z.i), -s*m.sinh(z.i))
END cos;
PROCEDURE tan * (z: COMPLEX): COMPLEX;
(* Returns the tangent of z *)
VAR s, c, y, d: REAL;
BEGIN
m.sincos(TWO*z.r, s, c);
y:=TWO*z.i; d:=c+m.cosh(y);
RETURN CMPLX(s/d, m.sinh(y)/d)
END tan;
PROCEDURE CalcAlphaBeta(z: COMPLEX; VAR a, b: REAL);
VAR x, x2, y, r, t: REAL;
BEGIN x:=z.r+ONE; x:=x*x; y:=z.i*z.i;
x2:=z.r-ONE; x2:=x2*x2;
r:=m.sqrt(x+y); t:=m.sqrt(x2+y);
a:=HALF*(r+t); b:=HALF*(r-t);
END CalcAlphaBeta;
PROCEDURE arcsin * (z: COMPLEX): COMPLEX;
(* Returns the arcsine of z *)
VAR a, b: REAL;
BEGIN
CalcAlphaBeta(z, a, b);
RETURN CMPLX(m.arcsin(b), m.ln(a+m.sqrt(a*a-1)))
END arcsin;
PROCEDURE arccos * (z: COMPLEX): COMPLEX;
(* Returns the arccosine of z *)
VAR a, b: REAL;
BEGIN
CalcAlphaBeta(z, a, b);
RETURN CMPLX(m.arccos(b), -m.ln(a+m.sqrt(a*a-1)))
END arccos;
PROCEDURE arctan * (z: COMPLEX): COMPLEX;
(* Returns the arctangent of z *)
VAR x, y, yp, x2, y2: REAL;
BEGIN
x:=TWO*z.r; y:=z.i+ONE; y:=y*y;
yp:=z.i-ONE; yp:=yp*yp;
x2:=z.r*z.r; y2:=z.i*z.i;
RETURN CMPLX(HALF*m.arctan(x/(ONE-x2-y2)), 0.25*m.ln((x2+y)/(x2+yp)))
END arctan;
PROCEDURE polarToComplex * (abs, arg: REAL): COMPLEX;
(* Returns the complex number with the specified polar coordinates *)
BEGIN
RETURN CMPLX(abs*m.cos(arg), abs*m.sin(arg))
END polarToComplex;
PROCEDURE scalarMult * (scalar: REAL; z: COMPLEX): COMPLEX;
(* Returns the scalar product of scalar with z *)
BEGIN
RETURN CMPLX(z.r*scalar, z.i*scalar)
END scalarMult;
PROCEDURE IsCMathException * (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state
because of the ComplexMath exception; otherwise returns FALSE.
*)
BEGIN
RETURN FALSE
END IsCMathException;
BEGIN
i:=CMPLX (ZERO, ONE);
one:=CMPLX (ONE, ZERO);
zero:=CMPLX (ZERO, ZERO)
END ComplexMath.
|