1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
(* $Id: LowReal.Mod,v 1.5 1999/09/02 13:17:38 acken Exp $ *)
MODULE LowReal;
(*
LowReal - Gives access to the underlying properties of the type REAL
for IEEE single-precision numbers.
Copyright (C) 1995 Michael Griebling
This module is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This module is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
IMPORT S := SYSTEM;
(*
Real number properties are defined as follows:
radix--The whole number value of the radix used to represent the
corresponding read number values.
places--The whole number value of the number of radix places used
to store values of the corresponding real number type.
expoMin--The whole number value of the exponent minimum.
expoMax--The whole number value of the exponent maximum.
large--The largest value of the corresponding real number type.
small--The smallest positive value of the corresponding real number
type, represented to maximal precision.
IEC559--A Boolean value that is TRUE if and only if the implementation
of the corresponding real number type conforms to IEC 559:1989
(IEEE 754:1987) in all regards.
NOTES
6 -- If `IEC559' is TRUE, the value of `radix' is 2.
7 -- If LowReal.IEC559 is TRUE, the 32-bit format of IEC 559:1989
is used for the type REAL.
7 -- If LowLong.IEC559 is TRUE, the 64-bit format of IEC 559:1989
is used for the type REAL.
LIA1--A Boolean value that is TRUE if and only if the implementation of
the corresponding real number type conforms to ISO/IEC 10967-1:199x
(LIA-1) in all regards: parameters, arithmetic, exceptions, and
notification.
rounds--A Boolean value that is TRUE if and only if each operation produces
a result that is one of the values of the corresponding real number
type nearest to the mathematical result.
gUnderflow--A Boolean value that is TRUE if and only if there are values of
the corresponding real number type between 0.0 and `small'.
exception--A Boolean value that is TRUE if and only if every operation that
attempts to produce a real value out of range raises an exception.
extend--A Boolean value that is TRUE if and only if expressions of the
corresponding real number type are computed to higher precision than
the stored values.
nModes--The whole number value giving the number of bit positions needed for
the status flags for mode control.
*)
CONST
radix*= 2;
places*= 24;
expoMax*= 127;
expoMin*= 1-expoMax;
large*= 3.40282347E+38; (* MAX(REAL) *)
small*= 1.17549435E-38; (* 2^(-126) *)
IEC559*= TRUE;
LIA1*= FALSE;
rounds*= FALSE;
gUnderflow*= TRUE; (* there are IEEE numbers smaller than `small' *)
exception*= FALSE; (* at least in the default implementation *)
extend*= FALSE;
nModes*= 0;
TEN=10.0; (* some commonly-used constants *)
ONE=1.0;
ZERO=0.0;
expOffset=expoMax;
hiBit=22;
expBit=hiBit+1;
nMask={0..hiBit,31}; (* number mask *)
expMask={expBit..30}; (* exponent mask *)
TYPE
Modes*= SET;
VAR
ErrorHandler*: PROCEDURE (errno : INTEGER);
err-: INTEGER;
(* Error handler default stub which can be replaced *)
PROCEDURE DefaultHandler (errno : INTEGER);
BEGIN
err:=errno
END DefaultHandler;
PROCEDURE ClearError*;
BEGIN
err:=0
END ClearError;
PROCEDURE exponent*(x: REAL): INTEGER;
(*
The value of the call exponent(x) shall be the exponent value of `x'
that lies between `expoMin' and `expoMax'. An exception shall occur
and may be raised if `x' is equal to 0.0.
*)
BEGIN
(* NOTE: x=0.0 should raise exception *)
IF x=ZERO THEN RETURN 0
ELSE RETURN SHORT(S.LSH(S.VAL(LONGINT,x),-expBit) MOD 256)-expOffset
END
END exponent;
PROCEDURE exponent10*(x: REAL): INTEGER;
(*
The value of the call exponent10(x) shall be the base 10 exponent
value of `x'. An exception shall occur and may be raised if `x' is
equal to 0.0.
*)
VAR exp: INTEGER;
BEGIN
exp:=0; x:=ABS(x);
IF x=ZERO THEN RETURN exp END; (* exception could be raised here *)
WHILE x>=TEN DO x:=x/TEN; INC(exp) END;
WHILE (x>ZERO) & (x<1.0) DO x:=x*TEN; DEC(exp) END;
RETURN exp
END exponent10;
PROCEDURE fraction*(x: REAL): REAL;
(*
The value of the call fraction(x) shall be the significand (or
significant) part of `x'. Hence the following relationship shall
hold: x = scale(fraction(x), exponent(x)).
*)
CONST eZero={(hiBit+2)..29};
BEGIN
IF x=ZERO THEN RETURN ZERO
ELSE RETURN S.VAL(REAL,(S.VAL(SET,x)*nMask)+eZero)*2.0 (* set the mantissa's exponent to zero *)
END
END fraction;
PROCEDURE IsInfinity * (real: REAL) : BOOLEAN;
CONST signMask={0..30};
BEGIN
RETURN S.VAL(SET,real)*signMask=expMask
END IsInfinity;
PROCEDURE IsNaN * (real: REAL) : BOOLEAN;
CONST fracMask={0..hiBit};
VAR sreal: SET;
BEGIN
sreal:=S.VAL(SET, real);
RETURN (sreal*expMask=expMask) & (sreal*fracMask#{})
END IsNaN;
PROCEDURE sign*(x: REAL): REAL;
(*
The value of the call sign(x) shall be 1.0 if `x' is greater than 0.0,
or shall be -1.0 if `x' is less than 0.0, or shall be either 1.0 or
-1.0 if `x' is equal to 0.0.
*)
BEGIN
IF x<ZERO THEN RETURN -ONE ELSE RETURN ONE END
END sign;
PROCEDURE scale*(x: REAL; n: INTEGER): REAL;
(*
The value of the call scale(x,n) shall be the value x*radix^n if such
a value exists; otherwise an execption shall occur and may be raised.
*)
VAR exp: LONGINT; lexp: SET;
BEGIN
IF x=ZERO THEN RETURN ZERO END;
exp:= exponent(x)+n; (* new exponent *)
IF exp>expoMax THEN RETURN large*sign(x) (* exception raised here *)
ELSIF exp<expoMin THEN RETURN small*sign(x) (* exception here as well *)
END;
lexp:=S.VAL(SET,S.LSH(exp+expOffset,expBit)); (* shifted exponent bits *)
RETURN S.VAL(REAL,(S.VAL(SET,x)*nMask)+lexp) (* insert new exponent *)
END scale;
PROCEDURE ulp*(x: REAL): REAL;
(*
The value of the call ulp(x) shall be the value of the corresponding
real number type equal to a unit in the last place of `x', if such a
value exists; otherwise an exception shall occur and may be raised.
*)
BEGIN
RETURN scale(ONE, exponent(x)-places+1)
END ulp;
PROCEDURE succ*(x: REAL): REAL;
(*
The value of the call succ(x) shall be the next value of the
corresponding real number type greater than `x', if such a type
exists; otherwise an exception shall occur and may be raised.
*)
BEGIN
RETURN x+ulp(x)*sign(x)
END succ;
PROCEDURE pred*(x: REAL): REAL;
(*
The value of the call pred(x) shall be the next value of the
corresponding real number type less than `x', if such a type exists;
otherwise an exception shall occur and may be raised.
*)
BEGIN
RETURN x-ulp(x)*sign(x)
END pred;
PROCEDURE intpart*(x: REAL): REAL;
(*
The value of the call intpart(x) shall be the integral part of `x'.
For negative values, this shall be -intpart(abs(x)).
*)
VAR loBit: INTEGER;
BEGIN
loBit:=(hiBit+1)-exponent(x);
IF loBit<=0 THEN RETURN x (* no fractional part *)
ELSIF loBit<=hiBit+1 THEN
RETURN S.VAL(REAL,S.VAL(SET,x)*{loBit..31}) (* integer part is extracted *)
ELSE RETURN ZERO (* no whole part *)
END
END intpart;
PROCEDURE fractpart*(x: REAL): REAL;
(*
The value of the call fractpart(x) shall be the fractional part of
`x'. This satifies the relationship fractpart(x)+intpart(x)=x.
*)
BEGIN
RETURN x-intpart(x)
END fractpart;
PROCEDURE trunc*(x: REAL; n: INTEGER): REAL;
(*
The value of the call trunc(x,n) shall be the value of the most
significant `n' places of `x'. An exception shall occur and may be
raised if `n' is less than or equal to zero.
*)
VAR loBit: INTEGER; mask: SET;
BEGIN loBit:=places-n;
IF n<=0 THEN RETURN ZERO (* exception should be raised *)
ELSIF loBit<=0 THEN RETURN x (* nothing was truncated *)
ELSE mask:={loBit..31}; (* truncation bit mask *)
RETURN S.VAL(REAL,S.VAL(SET,x)*mask)
END
END trunc;
PROCEDURE round*(x: REAL; n: INTEGER): REAL;
(*
The value of the call round(x,n) shall be the value of `x' rounded to
the most significant `n' places. An exception shall occur and may be
raised if such a value does not exist, or if `n' is less than or equal
to zero.
*)
VAR loBit: INTEGER; num, mask: SET; r: REAL;
BEGIN loBit:=places-n;
IF n<=0 THEN RETURN ZERO (* exception should be raised *)
ELSIF loBit<=0 THEN RETURN x (* nothing was rounded *)
ELSE mask:={loBit..31}; num:=S.VAL(SET,x); (* truncation bit mask and number as SET *)
x:=S.VAL(REAL,num*mask); (* truncated result *)
IF loBit-1 IN num THEN (* check if result should be rounded *)
r:=scale(ONE,exponent(x)-n+1); (* rounding fraction *)
IF 31 IN num THEN RETURN x-r (* negative rounding toward -infinity *)
ELSE RETURN x+r (* positive rounding toward +infinity *)
END
ELSE RETURN x (* return truncated result *)
END
END
END round;
PROCEDURE synthesize*(expart: INTEGER; frapart: REAL): REAL;
(*
The value of the call synthesize(expart,frapart) shall be a value of
the corresponding real number type contructed from the value of
`expart' and `frapart'. This value shall satisfy the relationship
synthesize(exponent(x),fraction(x)) = x.
*)
BEGIN
RETURN scale(frapart, expart)
END synthesize;
PROCEDURE setMode*(m: Modes);
(*
The call setMode(m) shall set status flags from the value of `m',
appropriate to the underlying implementation of the corresponding real
number type.
NOTES
3 -- Many implementations of floating point provide options for
setting flags within the system which control details of the handling
of the type. Although two procedures are provided, one for each real
number type, the effect may be the same. Typical effects that can be
obtained by this means are:
a) Ensuring that overflow will raise an exception;
b) Allowing underflow to raise an exception;
c) Controlling the rounding;
d) Allowing special values to be produced (e.g. NaNs in
implementations conforming to IEC 559:1989 (IEEE 754:1987));
e) Ensuring that special valu access will raise an exception;
Since these effects are so varied, the values of type `Modes' that may
be used are not specified by this International Standard.
4 -- The effects of `setMode' on operation on values of the
corresponding real number type in coroutines other than the calling
coroutine is not defined. Implementations are not require to preserve
the status flags (if any) with the coroutine state.
*)
BEGIN
(* hardware dependent mode setting of coprocessor *)
END setMode;
PROCEDURE currentMode*(): Modes;
(*
The value of the call currentMode() shall be the current status flags
(in the form set by `setMode'), or the default status flags (if
`setMode' is not used).
NOTE 5 -- The value of the call currentMode() is not necessarily the
value of set by `setMode', since a call of `setMode' might attempt to
set flags that cannot be set by the program.
*)
BEGIN
RETURN {}
END currentMode;
PROCEDURE IsLowException*(): BOOLEAN;
(*
Returns TRUE if the current coroutine is in the exceptional execution state
because of the raising of the LowReal exception; otherwise returns FALSE.
*)
BEGIN
RETURN FALSE
END IsLowException;
BEGIN
(* install the default error handler -- just sets err variable *)
ErrorHandler:=DefaultHandler
END LowReal.
|