1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
/*********************************************************
* Copyright (C) 1998-2003 VMware, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation version 2.1 and no later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
*********************************************************/
/*
* vm_basic_asm_x86.h
*
* Basic IA32 asm macros
*/
#ifndef _VM_BASIC_ASM_X86_H_
#define _VM_BASIC_ASM_X86_H_
#define INCLUDE_ALLOW_USERLEVEL
#define INCLUDE_ALLOW_VMMEXT
#define INCLUDE_ALLOW_MODULE
#define INCLUDE_ALLOW_VMMON
#define INCLUDE_ALLOW_VMNIXMOD
#define INCLUDE_ALLOW_VMK_MODULE
#define INCLUDE_ALLOW_VMKERNEL
#define INCLUDE_ALLOW_DISTRIBUTE
#define INCLUDE_ALLOW_VMCORE
#define INCLUDE_ALLOW_VMIROM
#include "includeCheck.h"
#ifdef VM_X86_64
/*
* The gcc inline asm uses the "A" constraint which differs in 32 & 64
* bit mode. 32 bit means eax and edx, 64 means rax or rdx.
*/
#error "x86-64 not supported"
#endif
/*
* from linux: usr/include/asm/io.h
*/
#ifdef __GNUC__
#ifndef __SLOW_DOWN_IO
#ifdef SLOW_IO_BY_JUMPING
#define __SLOW_DOWN_IO __asm__ __volatile__("jmp 1f\n1:\tjmp 1f\n1:")
#else
#define __SLOW_DOWN_IO __asm__ __volatile__("outb %al,$0x80")
#endif
#endif
#elif defined _MSC_VER
#ifdef SLOW_IO_BY_JUMPING
#define __SLOW_DOWN_IO __asm jmp SHORT $+2 __asm jmp SHORT $+2
#else
#define __SLOW_DOWN_IO __asm out 80h,al
#endif
#else
#error
#endif
#ifdef REALLY_SLOW_IO
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
#else
#define SLOW_DOWN_IO __SLOW_DOWN_IO
#endif
/*
* FXSAVE/FXRSTOR
* save/restore SIMD/MMX fpu state
*
* The pointer passed in must be 16-byte aligned.
*
* Intel and AMD processors behave differently w.r.t. fxsave/fxrstor. Intel
* processors unconditionally save the exception pointer state (instruction
* ptr., data ptr., and error instruction opcode). FXSAVE_ES1 and FXRSTOR_ES1
* work correctly for Intel processors.
*
* AMD processors only save the exception pointer state if ES=1. This leads to a
* security hole whereby one process/VM can inspect the state of another process
* VM. The AMD recommended workaround involves clobbering the exception pointer
* state unconditionally, and this is implemented in FXRSTOR_AMD_ES0. Note that
* FXSAVE_ES1 will only save the exception pointer state for AMD processors if
* ES=1.
*
* The workaround (FXRSTOR_AMD_ES0) only costs 1 cycle more than just doing an
* fxrstor, on both AMD Opteron and Intel Core CPUs.
*/
#if defined(__GNUC__)
static INLINE void
FXSAVE_ES1(uint8 *save)
{
__asm__ __volatile__ ("fxsave %0\n" : "=m" (*save) : : "memory");
}
static INLINE void
FXRSTOR_ES1(const uint8 *load)
{
__asm__ __volatile__ ("fxrstor %0\n" : : "m" (*load) : "memory");
}
static INLINE void
FXRSTOR_AMD_ES0(const uint8 *load)
{
uint64 dummy = 0;
__asm__ __volatile__
("fnstsw %%ax \n" // Grab x87 ES bit
"bt $7,%%ax \n" // Test ES bit
"jnc 1f \n" // Jump if ES=0
"fnclex \n" // ES=1. Clear it so fild doesn't trap
"1: \n"
"ffree %%st(7) \n" // Clear tag bit - avoid poss. stack overflow
"fildl %0 \n" // Dummy Load from "safe address" changes all
// x87 exception pointers.
"fxrstor %1 \n"
:
: "m" (dummy), "m" (*load)
: "ax", "memory");
}
#endif /* __GNUC__ */
/*
*-----------------------------------------------------------------------------
*
* Div643232 --
*
* Unsigned integer division:
* The dividend is 64-bit wide
* The divisor is 32-bit wide
* The quotient is 32-bit wide
*
* Use this function if you are certain that:
* o Either the quotient will fit in 32 bits,
* o Or your code is ready to handle a #DE exception indicating overflow.
* If that is not the case, then use Div643264(). --hpreg
*
* Results:
* Quotient and remainder
*
* Side effects:
* None
*
*-----------------------------------------------------------------------------
*/
#if defined(__GNUC__)
static INLINE void
Div643232(uint64 dividend, // IN
uint32 divisor, // IN
uint32 *quotient, // OUT
uint32 *remainder) // OUT
{
/* Checked against the Intel manual and GCC --hpreg */
__asm__(
"divl %4"
: "=a" (*quotient),
"=d" (*remainder)
: "0" ((uint32)dividend),
"1" ((uint32)(dividend >> 32)),
"rm" (divisor)
: "cc"
);
}
#elif defined _MSC_VER
static INLINE void
Div643232(uint64 dividend, // IN
uint32 divisor, // IN
uint32 *quotient, // OUT
uint32 *remainder) // OUT
{
/* Written and tested by mann, checked by dbudko and hpreg */
__asm {
mov eax, DWORD PTR [dividend]
mov edx, DWORD PTR [dividend+4]
div DWORD PTR [divisor]
mov edi, DWORD PTR [quotient]
mov [edi], eax
mov edi, DWORD PTR [remainder]
mov [edi], edx
}
}
#else
#error No compiler defined for Div643232
#endif
#if defined(__GNUC__)
/*
*-----------------------------------------------------------------------------
*
* Div643264 --
*
* Unsigned integer division:
* The dividend is 64-bit wide
* The divisor is 32-bit wide
* The quotient is 64-bit wide --hpreg
*
* Results:
* Quotient and remainder
*
* Side effects:
* None
*
*-----------------------------------------------------------------------------
*/
static INLINE void
Div643264(uint64 dividend, // IN
uint32 divisor, // IN
uint64 *quotient, // OUT
uint32 *remainder) // OUT
{
uint32 hQuotient;
uint32 lQuotient;
/* Checked against the Intel manual and GCC --hpreg */
__asm__(
"divl %5" "\n\t"
"movl %%eax, %0" "\n\t"
"movl %4, %%eax" "\n\t"
"divl %5"
: "=&rm" (hQuotient),
"=a" (lQuotient),
"=d" (*remainder)
: "1" ((uint32)(dividend >> 32)),
"g" ((uint32)dividend),
"rm" (divisor),
"2" (0)
: "cc"
);
*quotient = (uint64)hQuotient << 32 | lQuotient;
}
#endif
/*
*-----------------------------------------------------------------------------
*
* Mul64x3264 --
*
* Unsigned integer by fixed point multiplication:
* Unsigned 64-bit integer multiplicand.
* Unsigned 32-bit fixed point multiplier, represented as
* multiplier >> shift, where shift < 64.
* Unsigned 64-bit integer product.
*
* Implementation:
* Multiply 64x32 bits to yield a full 96-bit product.
* Shift right by shift.
* Return the low-order 64 bits of the result.
*
* Result:
* Product
*
* Side effects:
* None
*
*-----------------------------------------------------------------------------
*/
#if defined(__GNUC__)
static INLINE uint64
Mul64x3264(uint64 multiplicand, uint32 multiplier, uint32 shift)
{
uint64 result;
uint32 tmp1, tmp2;
// ASSERT(shift >= 0 && shift < 64);
/*
* Written and tested by mann, improved with suggestions by hpreg.
*
* The main improvement over the previous version is that the test
* of shift against 32 is moved out of the asm and into C code.
* This lets the compiler delete the test and one of the
* alternative code sequences in the case where shift is a
* constant. It also lets us use the best code sequence in each
* alternative, rather than a compromise. The downside is that in
* the non-constant case, this version takes slightly more code
* space.
*
* Note on the constraints: We don't really want multiplicand to
* start in %edx:%eax as the =A constraint dictates; in fact, we'd
* prefer any *other* two registers. But gcc doesn't have
* constraint syntax for any other register pair, and trying to
* constrain ((uint32) multiplicand) to one place and (multiplicand
* >> 32) to another generates *really* bad code -- gcc is just not
* smart enough, at least in the version we are currently using.
*/
if (shift < 32) {
__asm__("mov %%eax, %2 \n\t" // Save lo(multiplicand) in tmp2
"mov %%edx, %%eax \n\t" // Get hi(multiplicand)
"mull %4 \n\t" // p2 = hi(multiplicand) * multiplier
"xchg %%eax, %2 \n\t" // Save lo(p2) in tmp2, get lo(multiplicand)
"mov %%edx, %1 \n\t" // Save hi(p2) in tmp1
"mull %4 \n\t" // p1 = lo(multiplicand) * multiplier
"addl %2, %%edx \n\t" // hi(p1) += lo(p2)
"adcl $0, %1 \n\t" // hi(p2) += carry from previous step
"shrdl %%edx, %%eax \n\t" // result = hi(p2):hi(p1):lo(p1) >> shift
"shrdl %1, %%edx"
: "=A" (result),
"=&r" (tmp1), // use in shrdl requires it to be a register
"=&r" (tmp2) // could be "=&rm" but "m" is slower
: "0" (multiplicand),
"rm" (multiplier),
"c" (shift)
: "cc"
);
} else {
__asm__("mov %%edx, %2 \n\t" // Save hi(multiplicand) in tmp2
"mull %4 \n\t" // p1 = lo(multiplicand) * multiplier
"mov %%edx, %1 \n\t" // Save hi(p1) in tmp1
"mov %2, %%eax \n\t" // Discard lo(p1), get hi(multiplicand)
"mull %4 \n\t" // p2 = hi(multiplicand) * multiplier
"addl %1, %%eax \n\t" // lo(p2) += hi(p1)
"adcl $0, %%edx \n\t" // hi(p2) += carry from previous step
"shrdl %%edx, %%eax \n\t" // result = p2 >> (shift & 31)
"shrl %%cl, %%edx"
: "=A" (result),
"=&r" (tmp1), // could be "=&rm" but "m" is slower
"=&r" (tmp2) // could be "=&rm" but "m" is slower
: "0" (multiplicand),
"rm" (multiplier),
"c" (shift)
: "cc"
);
}
return result;
}
#elif defined _MSC_VER
#pragma warning(disable: 4035)
static INLINE uint64
Mul64x3264(uint64 multiplicand, uint32 multiplier, uint32 shift)
{
// ASSERT(shift >= 0 && shift < 64);
/* Written and tested by mann, checked by dbudko and hpreg */
__asm {
mov eax, DWORD PTR [multiplicand+4] // Get hi(multiplicand)
mul DWORD PTR [multiplier] // p2 = hi(multiplicand) * multiplier
mov ecx, eax // Save lo(p2)
mov ebx, edx // Save hi(p2)
mov eax, DWORD PTR [multiplicand] // Get lo(multiplicand)
mul DWORD PTR [multiplier+0] // p1 = lo(multiplicand) * multiplier
add edx, ecx // hi(p1) += lo(p2)
adc ebx, 0 // hi(p2) += carry from previous step
mov ecx, DWORD PTR [shift] // Get shift
cmp ecx, 32 // shift < 32?
jl SHORT l2 // Go if so
mov eax, edx // result = hi(p2):hi(p1) >> (shift & 31)
mov edx, ebx
shrd eax, edx, cl
shr edx, cl
jmp SHORT l3
l2:
shrd eax, edx, cl // result = hi(p2):hi(p1):lo(p1) >> shift
shrd edx, ebx, cl
l3:
}
// return with result in edx:eax
}
#pragma warning(default: 4035)
#else
#error No compiler defined for Mul64x3264
#endif
/*
*-----------------------------------------------------------------------------
*
* Muls64x32s64 --
*
* Signed integer by fixed point multiplication:
* Signed 64-bit integer multiplicand.
* Unsigned 32-bit fixed point multiplier, represented as
* multiplier >> shift, where shift < 64.
* Signed 64-bit integer product.
*
* Implementation:
* Multiply 64x32 bits to yield a full 96-bit product.
* Shift right by the location of the binary point.
* Return the low-order 64 bits of the result.
*
* Result:
* Product
*
* Side effects:
* None
*
*-----------------------------------------------------------------------------
*/
#if defined(__GNUC__)
static INLINE int64
Muls64x32s64(int64 multiplicand, uint32 multiplier, uint32 shift)
{
int64 result;
uint32 tmp1, tmp2;
// ASSERT(shift >= 0 && shift < 64);
/* Written and tested by mann, checked by dbudko and hpreg */
/* XXX hpreg suggested some improvements that we haven't converged on yet */
__asm__("mov %%eax, %2\n\t" // Save lo(multiplicand)
"mov %%edx, %%eax\n\t" // Get hi(multiplicand)
"test %%eax, %%eax\n\t" // Check sign of multiplicand
"jl 0f\n\t" // Go if negative
"mull %4\n\t" // p2 = hi(multiplicand) * multiplier
"jmp 1f\n"
"0:\n\t"
"mull %4\n\t" // p2 = hi(multiplicand) * multiplier
"sub %4, %%edx\n" // hi(p2) += -1 * multiplier
"1:\n\t"
"xchg %%eax, %2\n\t" // Save lo(p2), get lo(multiplicand)
"mov %%edx, %1\n\t" // Save hi(p2)
"mull %4\n\t" // p1 = lo(multiplicand) * multiplier
"addl %2, %%edx\n\t" // hi(p1) += lo(p2)
"adcl $0, %1\n\t" // hi(p2) += carry from previous step
"cmpl $32, %%ecx\n\t" // shift < 32?
"jl 2f\n\t" // Go if so
"mov %%edx, %%eax\n\t" // result = hi(p2):hi(p1) >> (shift & 31)
"mov %1, %%edx\n\t"
"shrdl %%edx, %%eax\n\t"
"sarl %%cl, %%edx\n\t"
"jmp 3f\n"
"2:\n\t"
"shrdl %%edx, %%eax\n\t" // result = hi(p2):hi(p1):lo(p1) >> shift
"shrdl %1, %%edx\n"
"3:\n\t"
: "=A" (result), "=&r" (tmp1), "=&r" (tmp2)
: "0" (multiplicand), "rm" (multiplier), "c" (shift)
: "cc");
return result;
}
#elif defined _MSC_VER
#pragma warning(disable: 4035)
static INLINE int64
Muls64x32s64(int64 multiplicand, uint32 multiplier, uint32 shift)
{
//ASSERT(shift >= 0 && shift < 64);
/* Written and tested by mann, checked by dbudko and hpreg */
__asm {
mov eax, DWORD PTR [multiplicand+4] // Get hi(multiplicand)
test eax, eax // Check sign of multiplicand
jl SHORT l0 // Go if negative
mul DWORD PTR [multiplier] // p2 = hi(multiplicand) * multiplier
jmp SHORT l1
l0:
mul DWORD PTR [multiplier] // p2 = hi(multiplicand) * multiplier
sub edx, DWORD PTR [multiplier] // hi(p2) += -1 * multiplier
l1:
mov ecx, eax // Save lo(p2)
mov ebx, edx // Save hi(p2)
mov eax, DWORD PTR [multiplicand] // Get lo(multiplicand)
mul DWORD PTR [multiplier] // p1 = lo(multiplicand) * multiplier
add edx, ecx // hi(p1) += lo(p2)
adc ebx, 0 // hi(p2) += carry from previous step
mov ecx, DWORD PTR [shift] // Get shift
cmp ecx, 32 // shift < 32?
jl SHORT l2 // Go if so
mov eax, edx // result = hi(p2):hi(p1) >> (shift & 31)
mov edx, ebx
shrd eax, edx, cl
sar edx, cl
jmp SHORT l3
l2:
shrd eax, edx, cl // result = hi(p2):hi(p1):lo(p1) << shift
shrd edx, ebx, cl
l3:
}
// return with result in edx:eax
}
#pragma warning(default: 4035)
#else
#error No compiler defined for Muls64x32s64
#endif
#endif
|