1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include "open3d/ml/contrib/IoU.h"
#include "open3d/core/TensorCheck.h"
#include "open3d/utility/Logging.h"
#include "pybind/core/tensor_converter.h"
#include "pybind/docstring.h"
#include "pybind/ml/contrib/contrib.h"
#include "pybind/open3d_pybind.h"
#include "pybind/pybind_utils.h"
namespace open3d {
namespace ml {
namespace contrib {
py::array IouBevCPU(py::array boxes_a, py::array boxes_b) {
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous();
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 5});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous();
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 5});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, core::Device("CPU:0"));
IoUBevCPUKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor);
}
py::array Iou3dCPU(py::array boxes_a, py::array boxes_b) {
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous();
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 7});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous();
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 7});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, core::Device("CPU:0"));
IoU3dCPUKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor);
}
#ifdef BUILD_CUDA_MODULE
py::array IouBevCUDA(py::array boxes_a, py::array boxes_b) {
core::Device cuda_device("CUDA:0");
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 5});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 5});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, cuda_device);
IoUBevCUDAKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor.To(core::Device("CPU:0")));
}
py::array Iou3dCUDA(py::array boxes_a, py::array boxes_b) {
core::Device cuda_device("CUDA:0");
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 7});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 7});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, cuda_device);
IoU3dCUDAKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor.To(core::Device("CPU:0")));
}
#endif
void pybind_contrib_iou(py::module& m_contrib) {
m_contrib.def("iou_bev_cpu", &IouBevCPU, "boxes_a"_a, "boxes_b"_a);
m_contrib.def("iou_3d_cpu", &Iou3dCPU, "boxes_a"_a, "boxes_b"_a);
#ifdef BUILD_CUDA_MODULE
// These CUDA functions still uses numpy arrays as input and output, i.e.
// data will be copy to and from the CUDA device.
m_contrib.def("iou_bev_cuda", &IouBevCUDA, "boxes_a"_a, "boxes_b"_a);
m_contrib.def("iou_3d_cuda", &Iou3dCUDA, "boxes_a"_a, "boxes_b"_a);
#endif
}
} // namespace contrib
} // namespace ml
} // namespace open3d
|