1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include <string>
#include <unordered_map>
#include "open3d/core/CUDAUtils.h"
#include "open3d/t/geometry/VoxelBlockGrid.h"
#include "pybind/core/tensor_converter.h"
#include "pybind/t/geometry/geometry.h"
namespace open3d {
namespace t {
namespace geometry {
void pybind_voxel_block_grid(py::module& m) {
py::class_<VoxelBlockGrid> vbg(
m, "VoxelBlockGrid",
"A voxel block grid is a sparse grid of voxel blocks. Each voxel "
"block is a dense 3D array, preserving local data distribution. If "
"the block_resolution is set to 1, then the VoxelBlockGrid "
"degenerates to a sparse voxel grid.");
vbg.def(py::init<const std::vector<std::string>&,
const std::vector<core::Dtype>&,
const std::vector<core::SizeVector>&, float, int64_t,
int64_t, const core::Device&>(),
"attr_names"_a, "attr_dtypes"_a, "attr_channels"_a,
"voxel_size"_a = 0.0058, "block_resolution"_a = 16,
"block_count"_a = 10000, "device"_a = core::Device("CPU:0"));
vbg.def("hashmap", &VoxelBlockGrid::GetHashMap,
"Get the underlying hash map from 3d block coordinates to block "
"voxel grids.");
vbg.def("attribute", &VoxelBlockGrid::GetAttribute,
"Get the attribute tensor to be indexed with voxel_indices.",
"attribute_name"_a);
vbg.def("voxel_indices",
py::overload_cast<const core::Tensor&>(
&VoxelBlockGrid::GetVoxelIndices, py::const_),
"Get a (4, N), Int64 index tensor for input buffer indices, used "
"for advanced indexing. "
"Returned index tensor can access selected value buffer"
"in the order of "
"(buf_index, index_voxel_x, index_voxel_y, index_voxel_z). "
"Example: "
"For a voxel block grid with (2, 2, 2) block resolution, "
"if the active block coordinates are at buffer index {(2, 4)} "
"given by active_indices() from the underlying hash map, "
"the returned result will be a (4, 2 x 8) tensor: "
"{ "
"(2, 0, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (2, 1, 1, 0), "
"(2, 0, 0, 1), (2, 1, 0, 1), (2, 0, 1, 1), (2, 1, 1, 1), "
"(4, 0, 0, 0), (4, 1, 0, 0), (4, 0, 1, 0), (4, 1, 1, 0), "
"(4, 0, 0, 1), (4, 1, 0, 1), (4, 0, 1, 1), (4, 1, 1, 1), "
"}"
"Note: the slicing order is z-y-x.");
vbg.def("voxel_indices",
py::overload_cast<>(&VoxelBlockGrid::GetVoxelIndices, py::const_),
"Get a (4, N) Int64 idnex tensor for all the active voxels stored "
"in the hash map, used for advanced indexing.");
vbg.def("voxel_coordinates", &VoxelBlockGrid::GetVoxelCoordinates,
"Get a (3, hashmap.Size() * resolution^3) coordinate tensor of "
"active"
"voxels per block, used for geometry transformation jointly with "
"indices from voxel_indices. "
"Example: "
"For a voxel block grid with (2, 2, 2) block resolution, "
"if the active block coordinates are {(-1, 3, 2), (0, 2, 4)}, "
"the returned result will be a (3, 2 x 8) tensor given by: "
"{ "
"key_tensor[voxel_indices[0]] * block_resolution_ + "
"voxel_indices[1] "
"key_tensor[voxel_indices[0]] * block_resolution_ + "
"voxel_indices[2] "
"key_tensor[voxel_indices[0]] * block_resolution_ + "
"voxel_indices[3] "
"} "
"Note: the coordinates are VOXEL COORDINATES in Int64. To access "
"metric"
"coordinates, multiply by voxel size.",
"voxel_indices"_a);
vbg.def("voxel_coordinates_and_flattened_indices",
py::overload_cast<const core::Tensor&>(
&VoxelBlockGrid::GetVoxelCoordinatesAndFlattenedIndices),
"Get a (buf_indices.shape[0] * resolution^3, 3), Float32 voxel "
"coordinate tensor,"
"and a (buf_indices.shape[0] * resolution^3, 1), Int64 voxel index "
"tensor.",
"buf_indices"_a);
vbg.def("voxel_coordinates_and_flattened_indices",
py::overload_cast<>(
&VoxelBlockGrid::GetVoxelCoordinatesAndFlattenedIndices),
"Get a (hashmap.size() * resolution^3, 3), Float32 voxel "
"coordinate tensor,"
"and a (hashmap.size() * resolution^3, 1), Int64 voxel index "
"tensor.");
vbg.def("compute_unique_block_coordinates",
py::overload_cast<const Image&, const core::Tensor&,
const core::Tensor&, float, float, float>(
&VoxelBlockGrid::GetUniqueBlockCoordinates),
"Get a (3, M) active block coordinates from a depth image, with "
"potential duplicates removed."
"Note: these coordinates are not activated in the internal sparse "
"voxel block. They need to be inserted in the hash map.",
"depth"_a, "intrinsic"_a, "extrinsic"_a, "depth_scale"_a = 1000.0f,
"depth_max"_a = 3.0f, "trunc_voxel_multiplier"_a = 8.0);
vbg.def("compute_unique_block_coordinates",
py::overload_cast<const PointCloud&, float>(
&VoxelBlockGrid::GetUniqueBlockCoordinates),
"Obtain active block coordinates from a point cloud.", "pcd"_a,
"trunc_voxel_multiplier"_a = 8.0);
vbg.def("integrate",
py::overload_cast<const core::Tensor&, const Image&, const Image&,
const core::Tensor&, const core::Tensor&,
const core::Tensor&, float, float, float>(
&VoxelBlockGrid::Integrate),
"Specific operation for TSDF volumes."
"Integrate an RGB-D frame in the selected block coordinates using "
"pinhole camera model.",
"block_coords"_a, "depth"_a, "color"_a, "depth_intrinsic"_a,
"color_intrinsic"_a, "extrinsic"_a,
"depth_scale"_a.noconvert() = 1000.0f,
"depth_max"_a.noconvert() = 3.0f,
"trunc_voxel_multiplier"_a.noconvert() = 8.0f);
vbg.def("integrate",
py::overload_cast<const core::Tensor&, const Image&, const Image&,
const core::Tensor&, const core::Tensor&, float,
float, float>(&VoxelBlockGrid::Integrate),
"Specific operation for TSDF volumes."
"Integrate an RGB-D frame in the selected block coordinates using "
"pinhole camera model.",
"block_coords"_a, "depth"_a, "color"_a, "intrinsic"_a,
"extrinsic"_a, "depth_scale"_a.noconvert() = 1000.0f,
"depth_max"_a.noconvert() = 3.0f,
"trunc_voxel_multiplier"_a.noconvert() = 8.0f);
vbg.def("integrate",
py::overload_cast<const core::Tensor&, const Image&,
const core::Tensor&, const core::Tensor&, float,
float, float>(&VoxelBlockGrid::Integrate),
"Specific operation for TSDF volumes."
"Similar to RGB-D integration, but only applied to depth images.",
"block_coords"_a, "depth"_a, "intrinsic"_a, "extrinsic"_a,
"depth_scale"_a.noconvert() = 1000.0f,
"depth_max"_a.noconvert() = 3.0f,
"trunc_voxel_multiplier"_a.noconvert() = 8.0f);
vbg.def("ray_cast", &VoxelBlockGrid::RayCast,
"Specific operation for TSDF volumes."
"Perform volumetric ray casting in the selected block coordinates."
"The block coordinates in the frustum can be taken from"
"compute_unique_block_coordinates"
"All the block coordinates can be taken from "
"hashmap().key_tensor()",
"block_coords"_a, "intrinsic"_a, "extrinsic"_a, "width"_a,
"height"_a,
"render_attributes"_a = std::vector<std::string>{"depth", "color"},
"depth_scale"_a = 1000.0f, "depth_min"_a = 0.1f,
"depth_max"_a = 3.0f, "weight_threshold"_a = 3.0f,
"trunc_voxel_multiplier"_a = 8.0f, "range_map_down_factor"_a = 8);
vbg.def("extract_point_cloud", &VoxelBlockGrid::ExtractPointCloud,
"Specific operation for TSDF volumes."
"Extract point cloud at isosurface points.",
"weight_threshold"_a = 3.0f, "estimated_point_number"_a = -1);
vbg.def("extract_triangle_mesh", &VoxelBlockGrid::ExtractTriangleMesh,
"Specific operation for TSDF volumes."
"Extract triangle mesh at isosurface points.",
"weight_threshold"_a = 3.0f, "estimated_vertex_number"_a = -1);
// Device transfers.
vbg.def("to", &VoxelBlockGrid::To,
"Transfer the voxel block grid to a specified device.", "device"_a,
"copy"_a = false);
vbg.def(
"cpu",
[](const VoxelBlockGrid& voxelBlockGrid) {
return voxelBlockGrid.To(core::Device("CPU:0"));
},
"Transfer the voxel block grid to CPU. If the voxel block grid is "
"already on CPU, no copy will be performed.");
vbg.def(
"cuda",
[](const VoxelBlockGrid& voxelBlockGrid, int device_id) {
return voxelBlockGrid.To(core::Device("CUDA", device_id));
},
"Transfer the voxel block grid to a CUDA device. If the voxel "
"block grid is already on the specified CUDA device, no copy "
"will be performed.",
"device_id"_a = 0);
vbg.def("save", &VoxelBlockGrid::Save,
"Save the voxel block grid to a npz file.", "file_name"_a);
vbg.def_static("load", &VoxelBlockGrid::Load,
"Load a voxel block grid from a npz file.", "file_name"_a);
}
} // namespace geometry
} // namespace t
} // namespace open3d
|