1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include "pybind/t/pipelines/odometry/odometry.h"
#include "open3d/t/pipelines/odometry/RGBDOdometry.h"
#include "pybind/docstring.h"
namespace open3d {
namespace t {
namespace pipelines {
namespace odometry {
void pybind_odometry_classes(py::module &m) {
py::enum_<Method>(m, "Method", "Tensor odometry estimation method.")
.value("PointToPlane", Method::PointToPlane)
.value("Intensity", Method::Intensity)
.value("Hybrid", Method::Hybrid)
.export_values();
// open3d.t.pipelines.odometry.OdometryConvergenceCriteria
py::class_<OdometryConvergenceCriteria> odometry_convergence_criteria(
m, "OdometryConvergenceCriteria",
"Convergence criteria of odometry. "
"Odometry algorithm stops if the relative change of fitness and "
"rmse hit ``relative_fitness`` and ``relative_rmse`` individually, "
"or the iteration number exceeds ``max_iteration``.");
py::detail::bind_copy_functions<OdometryConvergenceCriteria>(
odometry_convergence_criteria);
odometry_convergence_criteria
.def(py::init<int, double, double>(), "max_iteration"_a,
"relative_rmse"_a = 1e-6, "relative_fitness"_a = 1e-6)
.def_readwrite("max_iteration",
&OdometryConvergenceCriteria::max_iteration_,
"Maximum iteration before iteration stops.")
.def_readwrite(
"relative_rmse",
&OdometryConvergenceCriteria::relative_rmse_,
"If relative change (difference) of inliner RMSE score is "
"lower than ``relative_rmse``, the iteration stops.")
.def_readwrite(
"relative_fitness",
&OdometryConvergenceCriteria::relative_fitness_,
"If relative change (difference) of fitness score is lower "
"than ``relative_fitness``, the iteration stops.")
.def("__repr__", [](const OdometryConvergenceCriteria &c) {
return fmt::format(
"OdometryConvergenceCriteria[max_iteration={:d}, "
"relative_rmse={:e}, relative_fitness={:e}].",
c.max_iteration_, c.relative_rmse_,
c.relative_fitness_);
});
// open3d.t.pipelines.odometry.OdometryResult
py::class_<OdometryResult> odometry_result(m, "OdometryResult",
"Odometry results.");
py::detail::bind_copy_functions<OdometryResult>(odometry_result);
odometry_result
.def(py::init<core::Tensor, double, double>(),
"transformation"_a = core::Tensor::Eye(4, core::Float64,
core::Device("CPU:0")),
"inlier_rmse"_a = 0.0, "fitness"_a = 0.0)
.def_readwrite("transformation", &OdometryResult::transformation_,
"``4 x 4`` float64 tensor on CPU: The estimated "
"transformation matrix.")
.def_readwrite("inlier_rmse", &OdometryResult::inlier_rmse_,
"float: RMSE of all inlier correspondences. Lower "
"is better.")
.def_readwrite(
"fitness", &OdometryResult::fitness_,
"float: The overlapping area (# of inlier correspondences "
"/ # of points in target). Higher is better.")
.def("__repr__", [](const OdometryResult &odom_result) {
return fmt::format(
"OdometryResult[fitness={:e}, inlier_rmse={:e}]."
"\nAccess transformation to get result.",
odom_result.fitness_, odom_result.inlier_rmse_);
});
// open3d.t.pipelines.odometry.OdometryLossParams
py::class_<OdometryLossParams> odometry_loss_params(
m, "OdometryLossParams", "Odometry loss parameters.");
py::detail::bind_copy_functions<OdometryLossParams>(odometry_loss_params);
odometry_loss_params
.def(py::init<double, double, double>(),
"depth_outlier_trunc"_a = 0.07, "depth_huber_delta"_a = 0.05,
"intensity_huber_delta"_a = 0.1)
.def_readwrite("depth_outlier_trunc",
&OdometryLossParams::depth_outlier_trunc_,
"float: Depth difference threshold used to filter "
"projective associations.")
.def_readwrite("depth_huber_delta",
&OdometryLossParams::depth_huber_delta_,
"float: Huber norm parameter used in depth loss.")
.def_readwrite(
"intensity_huber_delta",
&OdometryLossParams::intensity_huber_delta_,
"float: Huber norm parameter used in intensity loss.")
.def("__repr__", [](const OdometryLossParams &olp) {
return fmt::format(
"OdometryLossParams[depth_outlier_trunc={:e}, "
"depth_huber_delta={:e}, intensity_huber_delta={:e}].",
olp.depth_outlier_trunc_, olp.depth_huber_delta_,
olp.intensity_huber_delta_);
});
}
// Odometry functions have similar arguments, sharing arg docstrings.
static const std::unordered_map<std::string, std::string>
map_shared_argument_docstrings = {
{"criteria", "Odometry convergence criteria."},
{"criteria_list", "List of Odometry convergence criteria."},
{"depth_outlier_trunc",
"Depth difference threshold used to filter projective "
"associations."},
{"depth_huber_delta",
"Huber norm parameter used in depth loss."},
{"depth_scale",
"Converts depth pixel values to meters by dividing the scale "
"factor."},
{"init_source_to_target",
"(4, 4) initial transformation matrix from source to target."},
{"intrinsics", "(3, 3) intrinsic matrix for projection."},
{"intensity_huber_delta",
"Huber norm parameter used in intensity loss."},
{"method",
"Estimation method used to apply RGBD odometry. "
"One of (``PointToPlane``, ``Intensity``, ``Hybrid``)"},
{"params", "Odometry loss parameters."},
{"source", "The source RGBD image."},
{"source_depth",
"(row, col, channel = 1) Float32 source depth image obtained "
"by PreprocessDepth before calling this function."},
{"source_intensity",
"(row, col, channel = 1) Float32 source intensity image "
"obtained by RGBToGray before calling this function"},
{"source_vertex_map",
"(row, col, channel = 3) Float32 source vertex image obtained "
"by CreateVertexMap before calling this function."},
{"target", "The target RGBD image."},
{"target_depth",
"(row, col, channel = 1) Float32 target depth image obtained "
"by PreprocessDepth before calling this function."},
{"target_depth_dx",
"(row, col, channel = 1) Float32 target depth gradient image "
"along x-axis obtained by FilterSobel before calling this "
"function."},
{"target_depth_dy",
"(row, col, channel = 1) Float32 target depth gradient image "
"along y-axis obtained by FilterSobel before calling this "
"function."},
{"target_intensity",
"(row, col, channel = 1) Float32 target intensity image "
"obtained by RGBToGray before calling this function"},
{"target_intensity_dx",
"(row, col, channel = 1) Float32 target intensity gradient "
"image along x-axis obtained by FilterSobel before calling "
"this function."},
{"target_intensity_dy",
"(row, col, channel = 1) Float32 target intensity gradient "
"image along y-axis obtained by FilterSobel before calling "
"this function."},
{"target_normal_map",
"(row, col, channel = 3) Float32 target normal image obtained "
"by CreateNormalMap before calling this function."},
{"target_vertex_map",
"(row, col, channel = 3) Float32 target vertex image obtained "
"by CreateVertexMap before calling this function."}};
void pybind_odometry_methods(py::module &m) {
m.def("rgbd_odometry_multi_scale", &RGBDOdometryMultiScale,
py::call_guard<py::gil_scoped_release>(),
"Function for Multi Scale RGBD odometry.", "source"_a, "target"_a,
"intrinsics"_a,
"init_source_to_target"_a =
core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")),
"depth_scale"_a = 1000.0f, "depth_max"_a = 3.0f,
"criteria_list"_a =
std::vector<OdometryConvergenceCriteria>({10, 5, 3}),
"method"_a = Method::Hybrid, "params"_a = OdometryLossParams());
docstring::FunctionDocInject(m, "rgbd_odometry_multi_scale",
map_shared_argument_docstrings);
m.def("compute_odometry_result_point_to_plane",
&ComputeOdometryResultPointToPlane,
py::call_guard<py::gil_scoped_release>(),
R"(Estimates the OdometryResult (4x4 rigid transformation T from
source to target, with inlier rmse and fitness). Performs one
iteration of RGBD odometry using
Loss function: :math:`[(V_p - V_q)^T N_p]^2`
where,
:math:`V_p` denotes the vertex at pixel p in the source,
:math:`V_q` denotes the vertex at pixel q in the target.
:math:`N_p` denotes the normal at pixel p in the source.
q is obtained by transforming p with init_source_to_target then
projecting with intrinsics.
Reference: KinectFusion, ISMAR 2011.)",
"source_vertex_map"_a, "target_vertex_map"_a, "target_normal_map"_a,
"intrinsics"_a, "init_source_to_target"_a, "depth_outlier_trunc"_a,
"depth_huber_delta"_a);
docstring::FunctionDocInject(m, "compute_odometry_result_point_to_plane",
map_shared_argument_docstrings);
m.def("compute_odometry_result_intensity", &ComputeOdometryResultIntensity,
py::call_guard<py::gil_scoped_release>(),
R"(Estimates the OdometryResult (4x4 rigid transformation T from
source to target, with inlier rmse and fitness). Performs one
iteration of RGBD odometry using
Loss function: :math:`(I_p - I_q)^2`
where,
:math:`I_p` denotes the intensity at pixel p in the source,
:math:`I_q` denotes the intensity at pixel q in the target.
q is obtained by transforming p with init_source_to_target then
projecting with intrinsics.
Reference:
Real-time visual odometry from dense RGB-D images,
ICCV Workshops, 2017.)",
"source_depth"_a, "target_depth"_a, "source_intensity"_a,
"target_intensity"_a, "target_intensity_dx"_a,
"target_intensity_dy"_a, "source_vertex_map"_a, "intrinsics"_a,
"init_source_to_target"_a, "depth_outlier_trunc"_a,
"intensity_huber_delta"_a);
docstring::FunctionDocInject(m, "compute_odometry_result_intensity",
map_shared_argument_docstrings);
m.def("compute_odometry_result_hybrid", &ComputeOdometryResultHybrid,
py::call_guard<py::gil_scoped_release>(),
R"(Estimates the OdometryResult (4x4 rigid transformation T from
source to target, with inlier rmse and fitness). Performs one
iteration of RGBD odometry using
Loss function: :math:`(I_p - I_q)^2 + \lambda(D_p - (D_q)')^2`
where,
:math:`I_p` denotes the intensity at pixel p in the source,
:math:`I_q` denotes the intensity at pixel q in the target.
:math:`D_p` denotes the depth pixel p in the source,
:math:`D_q` denotes the depth pixel q in the target.
q is obtained by transforming p with init_source_to_target then
projecting with intrinsics.
Reference: J. Park, Q.Y. Zhou, and V. Koltun,
Colored Point Cloud Registration Revisited, ICCV, 2017.)",
"source_depth"_a, "target_depth"_a, "source_intensity"_a,
"target_intensity"_a, "target_depth_dx"_a, "target_depth_dy"_a,
"target_intensity_dx"_a, "target_intensity_dy"_a,
"source_vertex_map"_a, "intrinsics"_a, "init_source_to_target"_a,
"depth_outlier_trunc"_a, "depth_huber_delta"_a,
"intensity_huber_delta"_a);
docstring::FunctionDocInject(m, "compute_odometry_result_hybrid",
map_shared_argument_docstrings);
}
void pybind_odometry(py::module &m) {
py::module m_submodule =
m.def_submodule("odometry", "Tensor odometry pipeline.");
pybind_odometry_classes(m_submodule);
pybind_odometry_methods(m_submodule);
}
} // namespace odometry
} // namespace pipelines
} // namespace t
} // namespace open3d
|