1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include "open3d/t/pipelines/registration/Registration.h"
#include <memory>
#include <utility>
#include "open3d/t/geometry/PointCloud.h"
#include "open3d/t/pipelines/registration/TransformationEstimation.h"
#include "open3d/utility/Logging.h"
#include "pybind/docstring.h"
#include "pybind/t/pipelines/registration/registration.h"
namespace open3d {
namespace t {
namespace pipelines {
namespace registration {
template <class TransformationEstimationBase = TransformationEstimation>
class PyTransformationEstimation : public TransformationEstimationBase {
public:
using TransformationEstimationBase::TransformationEstimationBase;
TransformationEstimationType GetTransformationEstimationType() const {
PYBIND11_OVERLOAD_PURE(TransformationEstimationType,
TransformationEstimationBase, void);
}
double ComputeRMSE(const t::geometry::PointCloud &source,
const t::geometry::PointCloud &target,
const core::Tensor &correspondences) const {
PYBIND11_OVERLOAD_PURE(double, TransformationEstimationBase, source,
target, correspondences);
}
core::Tensor ComputeTransformation(
const t::geometry::PointCloud &source,
const t::geometry::PointCloud &target,
const core::Tensor &correspondences) const {
PYBIND11_OVERLOAD_PURE(core::Tensor, TransformationEstimationBase,
source, target, correspondences);
}
};
void pybind_registration_classes(py::module &m) {
// open3d.t.pipelines.registration.ICPConvergenceCriteria
py::class_<ICPConvergenceCriteria> convergence_criteria(
m, "ICPConvergenceCriteria",
"Convergence criteria of ICP. "
"ICP algorithm stops if the relative change of fitness and rmse "
"hit ``relative_fitness`` and ``relative_rmse`` individually, "
"or the iteration number exceeds ``max_iteration``.");
py::detail::bind_copy_functions<ICPConvergenceCriteria>(
convergence_criteria);
convergence_criteria
.def(py::init<double, double, int>(), "relative_fitness"_a = 1e-6,
"relative_rmse"_a = 1e-6, "max_iteration"_a = 30)
.def_readwrite(
"relative_fitness",
&ICPConvergenceCriteria::relative_fitness_,
"If relative change (difference) of fitness score is lower "
"than ``relative_fitness``, the iteration stops.")
.def_readwrite(
"relative_rmse", &ICPConvergenceCriteria::relative_rmse_,
"If relative change (difference) of inlier RMSE score is "
"lower than ``relative_rmse``, the iteration stops.")
.def_readwrite("max_iteration",
&ICPConvergenceCriteria::max_iteration_,
"Maximum iteration before iteration stops.")
.def("__repr__", [](const ICPConvergenceCriteria &c) {
return fmt::format(
"ICPConvergenceCriteria[relative_fitness_={:e}, "
"relative_rmse={:e}, max_iteration_={:d}].",
c.relative_fitness_, c.relative_rmse_,
c.max_iteration_);
});
// open3d.t.pipelines.registration.RegistrationResult
py::class_<RegistrationResult> registration_result(m, "RegistrationResult",
"Registration results.");
py::detail::bind_default_constructor<RegistrationResult>(
registration_result);
py::detail::bind_copy_functions<RegistrationResult>(registration_result);
registration_result
.def_readwrite("transformation",
&RegistrationResult::transformation_,
"``4 x 4`` float64 tensor on CPU: The estimated "
"transformation matrix.")
.def_readwrite("correspondences_",
&RegistrationResult::correspondences_,
"Tensor of type Int64 containing indices of "
"corresponding target points, where the value is "
"the target index and the index of the value itself "
"is the source index. It contains -1 as value at "
"index with no correspondence.")
.def_readwrite("inlier_rmse", &RegistrationResult::inlier_rmse_,
"float: RMSE of all inlier correspondences. Lower "
"is better.")
.def_readwrite("fitness", &RegistrationResult::fitness_,
"float: The overlapping area (# of inlier "
"correspondences "
"/ # of points in source). Higher is better.")
.def("__repr__", [](const RegistrationResult &rr) {
return fmt::format(
"RegistrationResult[fitness_={:e}, "
"inlier_rmse={:e}, correspondences={:d}]."
"\nAccess transformation to get result.",
rr.fitness_, rr.inlier_rmse_,
rr.fitness_ * rr.correspondences_.GetLength());
});
// open3d.t.pipelines.registration.TransformationEstimation
py::class_<TransformationEstimation,
PyTransformationEstimation<TransformationEstimation>>
te(m, "TransformationEstimation",
"Base class that estimates a transformation between two "
"point clouds. The virtual function ComputeTransformation() "
"must be implemented in subclasses.");
te.def("compute_rmse", &TransformationEstimation::ComputeRMSE, "source"_a,
"target"_a, "correspondences"_a,
"Compute RMSE between source and target points cloud given "
"correspondences.");
te.def("compute_transformation",
&TransformationEstimation::ComputeTransformation, "source"_a,
"target"_a, "correspondences"_a,
"Compute transformation from source to target point cloud given "
"correspondences.");
docstring::ClassMethodDocInject(m, "TransformationEstimation",
"compute_rmse",
{{"source", "Source point cloud."},
{"target", "Target point cloud."},
{"correspondences",
"Tensor of type Int64 containing "
"indices of corresponding target "
"points, where the value is the "
"target index and the index of "
"the value itself is the source "
"index. It contains -1 as value "
"at index with no correspondence."}});
docstring::ClassMethodDocInject(
m, "TransformationEstimation", "compute_transformation",
{{"source", "Source point cloud."},
{"target", "Target point cloud."},
{"correspondences",
"Tensor of type Int64 containing indices of corresponding target "
"points, where the value is the target index and the index of "
"the value itself is the source index. It contains -1 as value "
"at index with no correspondence."}});
// open3d.t.pipelines.registration.TransformationEstimationPointToPoint
// TransformationEstimation
py::class_<TransformationEstimationPointToPoint,
PyTransformationEstimation<TransformationEstimationPointToPoint>,
TransformationEstimation>
te_p2p(m, "TransformationEstimationPointToPoint",
"Class to estimate a transformation for point to "
"point distance.");
py::detail::bind_copy_functions<TransformationEstimationPointToPoint>(
te_p2p);
te_p2p.def(py::init())
.def("__repr__",
[](const TransformationEstimationPointToPoint &te) {
return std::string("TransformationEstimationPointToPoint");
});
// open3d.t.pipelines.registration.TransformationEstimationPointToPlane
// TransformationEstimation
py::class_<TransformationEstimationPointToPlane,
PyTransformationEstimation<TransformationEstimationPointToPlane>,
TransformationEstimation>
te_p2l(m, "TransformationEstimationPointToPlane",
"Class to estimate a transformation for point to "
"plane distance.");
py::detail::bind_default_constructor<TransformationEstimationPointToPlane>(
te_p2l);
py::detail::bind_copy_functions<TransformationEstimationPointToPlane>(
te_p2l);
te_p2l.def(py::init([](const RobustKernel &kernel) {
return new TransformationEstimationPointToPlane(kernel);
}),
"kernel"_a)
.def("__repr__",
[](const TransformationEstimationPointToPlane &te) {
return std::string("TransformationEstimationPointToPlane");
})
.def_readwrite("kernel",
&TransformationEstimationPointToPlane::kernel_,
"Robust Kernel used in the Optimization");
// open3d.t.pipelines.registration.TransformationEstimationForColoredICP
// TransformationEstimation
py::class_<
TransformationEstimationForColoredICP,
PyTransformationEstimation<TransformationEstimationForColoredICP>,
TransformationEstimation>
te_col(m, "TransformationEstimationForColoredICP",
"Class to estimate a transformation between two point "
"clouds using color information");
py::detail::bind_default_constructor<TransformationEstimationForColoredICP>(
te_col);
py::detail::bind_copy_functions<TransformationEstimationForColoredICP>(
te_col);
te_col.def(py::init([](double lambda_geometric, RobustKernel &kernel) {
return new TransformationEstimationForColoredICP(
lambda_geometric, kernel);
}),
"lambda_geometric"_a, "kernel"_a)
.def(py::init([](const double lambda_geometric) {
return new TransformationEstimationForColoredICP(
lambda_geometric);
}),
"lambda_geometric"_a)
.def(py::init([](const RobustKernel kernel) {
auto te = TransformationEstimationForColoredICP();
te.kernel_ = kernel;
return te;
}),
"kernel"_a)
.def("__repr__",
[](const TransformationEstimationForColoredICP &te) {
return std::string(
"TransformationEstimationForColoredICP "
"with lambda_geometric: ") +
std::to_string(te.lambda_geometric_);
})
.def_readwrite(
"lambda_geometric",
&TransformationEstimationForColoredICP::lambda_geometric_,
"lambda_geometric")
.def_readwrite("kernel",
&TransformationEstimationForColoredICP::kernel_,
"Robust Kernel used in the Optimization");
}
// Registration functions have similar arguments, sharing arg docstrings.
static const std::unordered_map<std::string, std::string>
map_shared_argument_docstrings = {
{"correspondences",
"Tensor of type Int64 containing indices of corresponding "
"target points, where the value is the target index and the "
"index of the value itself is the source index. It contains "
"-1 as value at index with no correspondence."},
{"criteria", "Convergence criteria"},
{"criteria_list",
"List of Convergence criteria for each scale of multi-scale "
"icp."},
{"estimation_method",
"Estimation method. One of "
"(``TransformationEstimationPointToPoint``, "
"``TransformationEstimationPointToPlane``, "
"``TransformationEstimationForColoredICP``, "
"``TransformationEstimationForGeneralizedICP``)"},
{"init_source_to_target", "Initial transformation estimation"},
{"max_correspondence_distance",
"Maximum correspondence points-pair distance."},
{"max_correspondence_distances",
"o3d.utility.DoubleVector of maximum correspondence "
"points-pair distances for multi-scale icp."},
{"option", "Registration option"},
{"source", "The source point cloud."},
{"target", "The target point cloud."},
{"transformation",
"The 4x4 transformation matrix of type Float64 "
"to transform ``source`` to ``target``"},
{"voxel_size",
"The input pointclouds will be down-sampled to this "
"`voxel_size` scale. If `voxel_size` < 0, original scale will "
"be used. However it is highly recommended to down-sample the "
"point-cloud for performance. By default original scale of "
"the point-cloud will be used."},
{"voxel_sizes",
"o3d.utility.DoubleVector of voxel sizes in strictly "
"decreasing order, for multi-scale icp."},
{"callback_after_iteration",
"Optional lambda function, saves string to tensor map of "
"attributes such as iteration_index, scale_index, "
"scale_iteration_index, inlier_rmse, fitness, transformation, "
"on CPU device, updated after each iteration."}};
void pybind_registration_methods(py::module &m) {
m.def("evaluate_registration", &EvaluateRegistration,
py::call_guard<py::gil_scoped_release>(),
"Function for evaluating registration between point clouds",
"source"_a, "target"_a, "max_correspondence_distance"_a,
"transformation"_a =
core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")));
docstring::FunctionDocInject(m, "evaluate_registration",
map_shared_argument_docstrings);
m.def("icp", &ICP, py::call_guard<py::gil_scoped_release>(),
"Function for ICP registration", "source"_a, "target"_a,
"max_correspondence_distance"_a,
"init_source_to_target"_a =
core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")),
"estimation_method"_a = TransformationEstimationPointToPoint(),
"criteria"_a = ICPConvergenceCriteria(), "voxel_size"_a = -1.0,
"callback_after_iteration"_a = py::none());
docstring::FunctionDocInject(m, "icp", map_shared_argument_docstrings);
m.def("multi_scale_icp", &MultiScaleICP,
py::call_guard<py::gil_scoped_release>(),
"Function for Multi-Scale ICP registration", "source"_a, "target"_a,
"voxel_sizes"_a, "criteria_list"_a, "max_correspondence_distances"_a,
"init_source_to_target"_a =
core::Tensor::Eye(4, core::Float64, core::Device("CPU:0")),
"estimation_method"_a = TransformationEstimationPointToPoint(),
"callback_after_iteration"_a = py::none());
docstring::FunctionDocInject(m, "multi_scale_icp",
map_shared_argument_docstrings);
m.def("get_information_matrix", &GetInformationMatrix,
py::call_guard<py::gil_scoped_release>(),
"Function for computing information matrix from transformation "
"matrix. Information matrix is tensor of shape {6, 6}, dtype Float64 "
"on CPU device.",
"source"_a, "target"_a, "max_correspondence_distance"_a,
"transformation"_a);
docstring::FunctionDocInject(m, "get_information_matrix",
map_shared_argument_docstrings);
}
void pybind_registration(py::module &m) {
py::module m_submodule = m.def_submodule(
"registration", "Tensor-based registration pipeline.");
pybind_registration_classes(m_submodule);
pybind_registration_methods(m_submodule);
pybind_feature(m_submodule);
pybind_robust_kernels(m_submodule);
}
} // namespace registration
} // namespace pipelines
} // namespace t
} // namespace open3d
|