1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include "open3d/t/pipelines/slam/Frame.h"
#include "open3d/t/pipelines/slam/Model.h"
#include "pybind/docstring.h"
namespace open3d {
namespace t {
namespace pipelines {
namespace slam {
static const std::unordered_map<std::string, std::string>
map_shared_argument_docstrings = {
{"voxel_size", "The voxel size of the volume in meters."},
{"block_resolution",
"Resolution of local dense voxel blocks. By default 16 "
"is used to create 16^3 voxel blocks."},
{"block_count",
"Number of estimate blocks per scene with the block "
"resolution set to 16 and the 6mm voxel resolution. "
"Typically 20000 for small scenes (a desk), 40000 for medium "
"scenes (a bedroom), 80000 for large scenes (an "
"apartment)."},
{"transformation", "A 4x4 3D transformation matrix."},
{"device", "The CPU or CUDA device used for the object."},
{"depth_max",
"The max clipping depth to filter noisy observations too "
"far."},
{"depth_min", "The min clipping depth."},
{"depth_scale",
"The scale factor to convert raw depth into meters."},
{"input_frame",
"The frame that contains raw depth and optionally images with "
"the same size from the input."},
{"model_frame",
"The frame that contains ray casted depth and optionally "
"color from the volumetric model."},
{"estimated_number",
"Estimated number of surface points. Use -1 if no estimation "
"is available."},
{"weight_threshold",
"Weight threshold to filter outlier voxel blocks."},
{"height", "Height of an image frame."},
{"width", "Width of an image frame."},
{"intrinsics", "Intrinsic matrix stored in a 3x3 Tensor."},
{"trunc_voxel_multiplier",
"Truncation distance multiplier in voxel size for signed "
"distance. For instance, "
"--trunc_voxel_multiplier=8 with --voxel_size=0.006(m) "
"creates a truncation distance of 0.048(m)."}};
void pybind_slam_model(py::module &m) {
py::class_<Model> model(m, "Model", "Volumetric model for Dense SLAM.");
py::detail::bind_copy_functions<Model>(model);
model.def(py::init<>());
model.def(py::init<float, int, int, core::Tensor, core::Device>(),
"Constructor of a VoxelBlockGrid", "voxel_size"_a,
"block_resolution"_a = 16, " block_count"_a = 10000,
"transformation"_a = core::Tensor::Eye(4, core::Float64,
core::Device("CPU:0")),
"device"_a = core::Device("CUDA:0"));
docstring::ClassMethodDocInject(m, "Model", "__init__",
map_shared_argument_docstrings);
model.def("get_current_frame_pose", &Model::GetCurrentFramePose);
model.def("update_frame_pose", &Model::UpdateFramePose);
model.def("synthesize_model_frame", &Model::SynthesizeModelFrame,
py::call_guard<py::gil_scoped_release>(),
"Synthesize frame from the volumetric model using ray casting.",
"model_frame"_a, "depth_scale"_a = 1000.0, "depth_min"_a = 0.1,
"depth_max"_a = 3.0, "trunc_voxel_multiplier"_a = 8.0,
"enable_color"_a = false, "weight_threshold"_a = -1.0);
docstring::ClassMethodDocInject(m, "Model", "synthesize_model_frame",
map_shared_argument_docstrings);
model.def(
"track_frame_to_model", &Model::TrackFrameToModel,
py::call_guard<py::gil_scoped_release>(),
"Track input frame against raycasted frame from model.",
"input_frame"_a, "model_frame"_a, "depth_scale"_a = 1000.0,
"depth_max"_a = 3.0, "depth_diff"_a = 0.07,
"method"_a = odometry::Method::PointToPlane,
"criteria"_a = (std::vector<odometry::OdometryConvergenceCriteria>){
6, 3, 1});
docstring::ClassMethodDocInject(m, "Model", "track_frame_to_model",
map_shared_argument_docstrings);
model.def("integrate", &Model::Integrate,
py::call_guard<py::gil_scoped_release>(),
"Integrate an input frame to a volume.", "input_frame"_a,
"depth_scale"_a = 1000.0, "depth_max"_a = 3.0,
"trunc_voxel_multiplier"_a = 8.0);
docstring::ClassMethodDocInject(m, "Model", "integrate",
map_shared_argument_docstrings);
model.def("extract_pointcloud", &Model::ExtractPointCloud,
py::call_guard<py::gil_scoped_release>(),
"Extract point cloud from the volumetric model.",
"weight_threshold"_a = 3.0, "estimated_number"_a = -1);
docstring::ClassMethodDocInject(m, "Model", "extract_pointcloud",
map_shared_argument_docstrings);
model.def("extract_trianglemesh", &Model::ExtractTriangleMesh,
py::call_guard<py::gil_scoped_release>(),
"Extract triangle mesh from the volumetric model.",
"weight_threshold"_a = 3.0, "estimated_number"_a = -1);
docstring::ClassMethodDocInject(m, "Model", "extract_trianglemesh",
map_shared_argument_docstrings);
model.def(
"get_hashmap", &Model::GetHashMap,
"Get the underlying hash map from 3D coordinates to voxel blocks.");
model.def_readwrite("voxel_grid", &Model::voxel_grid_,
"Get the maintained VoxelBlockGrid.");
model.def_readwrite("frustum_block_coords", &Model::frustum_block_coords_,
"Active block coordinates from prior integration");
model.def_readwrite("transformation_frame_to_world",
&Model::T_frame_to_world_,
"Get the 4x4 transformation matrix from the current "
"frame to the world frame.");
model.def_readwrite("frame_id", &Model::frame_id_,
"Get the current frame index in a sequence.");
}
void pybind_slam_frame(py::module &m) {
py::class_<Frame> frame(m, "Frame",
"A frame container that stores a map from keys "
"(color, depth) to tensor images.");
py::detail::bind_copy_functions<Frame>(frame);
frame.def(py::init<int, int, core::Tensor, core::Device>(), "height"_a,
"width"_a, "intrinsics"_a, "device"_a);
docstring::ClassMethodDocInject(m, "Frame", "__init__",
map_shared_argument_docstrings);
frame.def("height", &Frame::GetHeight);
frame.def("width", &Frame::GetWidth);
frame.def("set_data", &Frame::SetData,
"Set a 2D tensor to a image to the given key in the map.");
frame.def("get_data", &Frame::GetData,
"Get a 2D tensor from a image from the given key in the map.");
frame.def("set_data_from_image", &Frame::SetDataFromImage,
"Set a 2D image to the given key in the map.");
frame.def("get_data_as_image", &Frame::GetDataAsImage,
"Get a 2D image from from the given key in the map.");
}
void pybind_slam(py::module &m) {
py::module m_submodule =
m.def_submodule("slam", "Tensor DenseSLAM pipeline.");
pybind_slam_model(m_submodule);
pybind_slam_frame(m_submodule);
}
} // namespace slam
} // namespace pipelines
} // namespace t
} // namespace open3d
|