1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include <cmath>
#include <limits>
#include "open3d/core/AdvancedIndexing.h"
#include "open3d/core/Dtype.h"
#include "open3d/core/MemoryManager.h"
#include "open3d/core/SizeVector.h"
#include "open3d/core/Tensor.h"
#include "open3d/core/TensorList.h"
#include "open3d/core/kernel/Kernel.h"
#include "open3d/utility/Helper.h"
#include "tests/Tests.h"
#include "tests/core/CoreTest.h"
namespace open3d {
namespace tests {
class TensorObjectPermuteDevices : public PermuteDevices {};
INSTANTIATE_TEST_SUITE_P(TensorObject,
TensorObjectPermuteDevices,
testing::ValuesIn(PermuteDevices::TestCases()));
class TensorObjectPermuteDevicePairs : public PermuteDevicePairs {};
INSTANTIATE_TEST_SUITE_P(
TensorObject,
TensorObjectPermuteDevicePairs,
testing::ValuesIn(TensorObjectPermuteDevicePairs::TestCases()));
class TestObject {
public:
TestObject() = default;
TestObject(int val, void *ptr = nullptr) : val_(val), ptr_(ptr) {}
bool operator==(const TestObject &other) const {
return val_ == other.val_ && ptr_ == other.ptr_;
}
private:
int val_;
void *ptr_;
};
static_assert(std::is_pod<TestObject>(), "TestObject must be a POD.");
static const int64_t byte_size = sizeof(TestObject);
static const std::string class_name = "TestObject";
TEST_P(TensorObjectPermuteDevices, Constructor) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
for (const core::SizeVector &shape : std::vector<core::SizeVector>{
{}, {0}, {0, 0}, {0, 1}, {1, 0}, {2, 3}}) {
core::Tensor t(shape, dtype, device);
EXPECT_EQ(t.GetShape(), shape);
EXPECT_EQ(t.GetDtype(), dtype);
EXPECT_EQ(t.GetDtype().ToString(), class_name);
EXPECT_EQ(t.GetDtype().ByteSize(), byte_size);
EXPECT_EQ(t.GetDevice(), device);
}
EXPECT_ANY_THROW(core::Tensor({-1}, dtype, device));
EXPECT_ANY_THROW(core::Tensor({0, -2}, dtype, device));
EXPECT_ANY_THROW(core::Tensor({-1, -1}, dtype, device));
}
TEST_P(TensorObjectPermuteDevices, WithInitValueObject) {
core::Device device = GetParam();
core::Dtype dtype =
core::Dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
std::vector<TestObject> vals{TestObject(0), TestObject(1), TestObject(2),
TestObject(3), TestObject(4), TestObject(5)};
core::Tensor t(vals, {2, 3}, dtype, device);
EXPECT_EQ(t.ToFlatVector<TestObject>(), vals);
}
TEST_P(TensorObjectPermuteDevices, FillObject) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
core::Tensor t(std::vector<TestObject>(2 * 3, 0), {2, 3}, dtype, device);
t.FillObject(TestObject(1));
EXPECT_EQ(t.ToFlatVector<TestObject>(),
std::vector<TestObject>({1, 1, 1, 1, 1, 1}));
}
TEST_P(TensorObjectPermuteDevicePairs, IndexSetFillFancyObject) {
core::Device dst_device;
core::Device src_device;
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
std::tie(dst_device, src_device) = GetParam();
core::Tensor dst_t(std::vector<TestObject>(2 * 3 * 4, 0), {2, 3, 4}, dtype,
dst_device);
core::Tensor src_t(std::vector<TestObject>{1}, core::SizeVector({}), dtype,
src_device);
// t[:, [1, 2], [1, 2]]
std::vector<core::Tensor> indices = {
core::Tensor(core::SizeVector(), core::Int64, dst_device),
core::Tensor(std::vector<int64_t>({1, 2}), {2}, core::Int64,
src_device),
core::Tensor(std::vector<int64_t>({1, 2}), {2}, core::Int64,
dst_device)};
dst_t.IndexSet(indices, src_t);
EXPECT_EQ(dst_t.ToFlatVector<TestObject>(),
std::vector<TestObject>({0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0}));
}
TEST_P(TensorObjectPermuteDevicePairs, CopyObject) {
core::Device dst_device;
core::Device src_device;
std::tie(dst_device, src_device) = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
core::SizeVector shape{2, 3};
std::vector<TestObject> vals{0, 1, 2, 3, 4, 5};
core::Tensor src_t(vals, shape, dtype, src_device);
core::Tensor dst_t = src_t.To(dst_device);
EXPECT_EQ(dst_t.GetShape(), src_t.GetShape());
EXPECT_EQ(dst_t.GetDevice(), dst_device);
EXPECT_EQ(dst_t.GetDtype(), src_t.GetDtype());
EXPECT_EQ(dst_t.ToFlatVector<TestObject>(), vals);
}
TEST_P(TensorObjectPermuteDevicePairs, CopyBroadcastObject) {
core::Device dst_device;
core::Device src_device;
std::tie(dst_device, src_device) = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
// Broadcast {2, 1, 3} to {2, 2, 2, 3}
core::SizeVector src_shape{2, 1, 3};
core::SizeVector dst_shape{2, 2, 2, 3};
std::vector<TestObject> src_vals{0, 1, 2, 3, 4, 5};
std::vector<TestObject> dst_vals{0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5,
0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5};
core::Tensor src_t(src_vals, src_shape, dtype, src_device);
core::Tensor dst_t(dst_shape, dtype, dst_device);
dst_t.CopyFrom(src_t); // Equivalently, dst_t.AsRvalue() = src_t;
EXPECT_EQ(dst_t.GetShape(), dst_shape);
EXPECT_EQ(dst_t.ToFlatVector<TestObject>(), dst_vals);
}
TEST_P(TensorObjectPermuteDevices, ItemObject) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
std::vector<TestObject> vals{3, 7, 4};
core::Tensor t(vals, {3}, dtype, device);
core::Tensor t_0 = t[0];
EXPECT_THROW(t_0.Item<int>(), std::runtime_error);
EXPECT_THROW(t_0.Item<uint8_t>(), std::runtime_error);
EXPECT_EQ(t[0].Item<TestObject>(), TestObject(3));
EXPECT_EQ(t[1].Item<TestObject>(), TestObject(7));
EXPECT_EQ(t[2].Item<TestObject>(), TestObject(4));
}
TEST_P(TensorObjectPermuteDevices, ItemAssignObject) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
std::vector<TestObject> vals{0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23};
core::Tensor t(vals, {2, 3, 4}, dtype, device);
// Assigning to rvalue
TestObject new_val_0(100);
t[1][2][3].AssignObject(new_val_0);
EXPECT_EQ(t[1][2][3].Item<TestObject>(), TestObject(100));
}
TEST_P(TensorObjectPermuteDevices, IsSameObject) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
// "Shallow" copy.
core::Tensor t0 = core::Tensor::Empty({6, 8}, dtype, device);
core::Tensor t1 = t0; // "Shallow" copy
EXPECT_TRUE(t0.IsSame(t1));
EXPECT_TRUE(t1.IsSame(t0));
// Copy constructor copies view.
core::Tensor t0_copy_construct(t0);
EXPECT_TRUE(t0.IsSame(t0_copy_construct));
EXPECT_TRUE(t0_copy_construct.IsSame(t0));
// New tensor of the same value.
core::Tensor t2 = core::Tensor::Empty({6, 8}, dtype, device);
EXPECT_FALSE(t0.IsSame(t2));
EXPECT_FALSE(t2.IsSame(t0));
// Tensor::Contiguous() does not copy if already contiguous.
core::Tensor t0_contiguous = t0.Contiguous();
EXPECT_TRUE(t0.IsSame(t0_contiguous));
EXPECT_TRUE(t0_contiguous.IsSame(t0));
// Slices are views.
core::Tensor t0_slice = t0.GetItem({core::TensorKey::Slice(0, 5, 2)})[0];
// t0 [0:5:2][0]
core::Tensor t1_slice = t1[0];
EXPECT_TRUE(t0_slice.IsSame(t1_slice));
EXPECT_TRUE(t1_slice.IsSame(t0_slice));
// Explicit copy to the same device.
core::Tensor t0_copy = t0.To(device, /*copy=*/true);
EXPECT_FALSE(t0.IsSame(t0_copy));
EXPECT_FALSE(t0_copy.IsSame(t0));
// std::vector<Tensor> initializer list and push_back() are views.
std::vector<core::Tensor> vec{t0};
vec.push_back(t1);
EXPECT_TRUE(t0.IsSame(vec[0]));
EXPECT_TRUE(t1.IsSame(vec[1]));
EXPECT_TRUE(vec[0].IsSame(vec[1]));
}
TEST_P(TensorObjectPermuteDevices, ConstructFromObjectTensorVector) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
core::Tensor t0 = core::Tensor::Empty({2, 3}, dtype, device);
core::Tensor t1 = core::Tensor::Empty({2, 3}, dtype, device);
core::Tensor t2 = core::Tensor::Empty({2, 3}, dtype, device);
core::TensorList tl(std::vector<core::Tensor>({t0, t1, t2}));
// Check tensor list.
core::SizeVector full_shape({3, 2, 3});
EXPECT_EQ(tl.AsTensor().GetShape(), full_shape);
EXPECT_EQ(tl.GetSize(), 3);
EXPECT_EQ(tl.GetReservedSize(), 8);
// Values should be copied.
EXPECT_ANY_THROW(tl[0].AllClose(t0));
EXPECT_ANY_THROW(tl[1].AllClose(t1));
EXPECT_ANY_THROW(tl[2].AllClose(t2));
EXPECT_FALSE(tl[0].IsSame(t0));
EXPECT_FALSE(tl[1].IsSame(t1));
EXPECT_FALSE(tl[2].IsSame(t2));
}
TEST_P(TensorObjectPermuteDevices, TensorListFromObjectTensor) {
core::Device device = GetParam();
core::Dtype dtype(core::Dtype::DtypeCode::Object, byte_size, class_name);
core::Tensor t = core::Tensor::Empty({3, 4, 5}, dtype, device);
// Copied tensor.
core::TensorList tl = core::TensorList::FromTensor(t);
EXPECT_EQ(tl.GetElementShape(), core::SizeVector({4, 5}));
EXPECT_EQ(tl.GetSize(), 3);
EXPECT_EQ(tl.GetReservedSize(), 8);
EXPECT_ANY_THROW(tl.AsTensor().AllClose(t));
EXPECT_FALSE(tl.AsTensor().IsSame(t));
// Inplace tensor.
core::TensorList tl_inplace = core::TensorList::FromTensor(t, true);
EXPECT_EQ(tl_inplace.GetElementShape(), core::SizeVector({4, 5}));
EXPECT_EQ(tl_inplace.GetSize(), 3);
EXPECT_EQ(tl_inplace.GetReservedSize(), 3);
EXPECT_ANY_THROW(tl_inplace.AsTensor().AllClose(t));
EXPECT_TRUE(tl_inplace.AsTensor().IsSame(t));
}
} // namespace tests
} // namespace open3d
|