1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// The MIT License (MIT)
//
// Copyright (c) 2018-2021 www.open3d.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
// ----------------------------------------------------------------------------
#include "open3d/t/geometry/VoxelBlockGrid.h"
#include "core/CoreTest.h"
#include "open3d/core/EigenConverter.h"
#include "open3d/core/Tensor.h"
#include "open3d/data/Dataset.h"
#include "open3d/io/PinholeCameraTrajectoryIO.h"
#include "open3d/io/TriangleMeshIO.h"
#include "open3d/t/io/ImageIO.h"
#include "open3d/t/io/NumpyIO.h"
#include "open3d/utility/FileSystem.h"
#include "open3d/visualization/utility/DrawGeometry.h"
namespace open3d {
namespace tests {
using namespace t::geometry;
class VoxelBlockGridPermuteDevices : public PermuteDevices {};
INSTANTIATE_TEST_SUITE_P(VoxelBlockGrid,
VoxelBlockGridPermuteDevices,
testing::ValuesIn(PermuteDevices::TestCases()));
static core::Tensor GetIntrinsicTensor() {
camera::PinholeCameraIntrinsic intrinsic = camera::PinholeCameraIntrinsic(
camera::PinholeCameraIntrinsicParameters::PrimeSenseDefault);
auto focal_length = intrinsic.GetFocalLength();
auto principal_point = intrinsic.GetPrincipalPoint();
return core::Tensor::Init<double>(
{{focal_length.first, 0, principal_point.first},
{0, focal_length.second, principal_point.second},
{0, 0, 1}});
}
static std::vector<core::Tensor> GetExtrinsicTensors() {
data::SampleRedwoodRGBDImages redwood_data;
// Extrinsics
auto trajectory = io::CreatePinholeCameraTrajectoryFromFile(
redwood_data.GetOdometryLogPath());
std::vector<core::Tensor> extrinsics;
for (size_t i = 0; i < trajectory->parameters_.size(); ++i) {
Eigen::Matrix4d extrinsic = trajectory->parameters_[i].extrinsic_;
core::Tensor extrinsic_t =
core::eigen_converter::EigenMatrixToTensor(extrinsic);
extrinsics.emplace_back(extrinsic_t);
}
return extrinsics;
}
static std::vector<core::HashBackendType> EnumerateBackends(
const core::Device &device, bool include_slab = true) {
std::vector<core::HashBackendType> backends;
if (device.IsCUDA()) {
if (include_slab) {
backends.push_back(core::HashBackendType::Slab);
}
backends.push_back(core::HashBackendType::StdGPU);
} else {
backends.push_back(core::HashBackendType::TBB);
}
return backends;
}
static VoxelBlockGrid Integrate(const core::HashBackendType &backend,
const core::Dtype &dtype,
const core::Device &device,
const int resolution) {
core::Tensor intrinsic = GetIntrinsicTensor();
std::vector<core::Tensor> extrinsics = GetExtrinsicTensors();
const float depth_scale = 1000.0;
const float depth_max = 3.0;
auto vbg = VoxelBlockGrid({"tsdf", "weight", "color"},
{core::Float32, dtype, dtype}, {{1}, {1}, {3}},
3.0 / 512, resolution, 10000, device, backend);
data::SampleRedwoodRGBDImages redwood_data;
for (size_t i = 0; i < extrinsics.size(); ++i) {
Image depth =
t::io::CreateImageFromFile(redwood_data.GetDepthPaths()[i])
->To(device);
Image color =
t::io::CreateImageFromFile(redwood_data.GetColorPaths()[i])
->To(device);
core::Tensor frustum_block_coords = vbg.GetUniqueBlockCoordinates(
depth, intrinsic, extrinsics[i], depth_scale, depth_max,
/*trunc_multiplier=*/4.0);
vbg.Integrate(frustum_block_coords, depth, color, intrinsic,
extrinsics[i], depth_scale, depth_max,
/*trunc multiplier*/ resolution * 0.5);
}
return vbg;
}
TEST_P(VoxelBlockGridPermuteDevices, Construct) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends = EnumerateBackends(device);
for (auto backend : backends) {
auto vbg = VoxelBlockGrid({"tsdf", "weight", "color"},
{core::Float32, core::UInt16, core::UInt8},
{{1}, {1}, {3}}, 3.0 / 512, 8,
/* init capacity = */ 10, device, backend);
auto tsdf_tensor = vbg.GetAttribute("tsdf");
auto weight_tensor = vbg.GetAttribute("weight");
auto color_tensor = vbg.GetAttribute("color");
EXPECT_EQ(tsdf_tensor.GetShape(), core::SizeVector({10, 8, 8, 8, 1}));
EXPECT_EQ(tsdf_tensor.GetDtype(), core::Dtype::Float32);
EXPECT_EQ(weight_tensor.GetShape(), core::SizeVector({10, 8, 8, 8, 1}));
EXPECT_EQ(weight_tensor.GetDtype(), core::Dtype::UInt16);
EXPECT_EQ(color_tensor.GetShape(), core::SizeVector({10, 8, 8, 8, 3}));
EXPECT_EQ(color_tensor.GetDtype(), core::Dtype::UInt8);
}
}
TEST_P(VoxelBlockGridPermuteDevices, Exceptions) {
core::Tensor intrinsic = GetIntrinsicTensor();
std::vector<core::Tensor> extrinsics = GetExtrinsicTensors();
float depth_scale = 1000.0;
float depth_max = 3.0;
data::SampleRedwoodRGBDImages redwood_data;
Image depth = *t::io::CreateImageFromFile(redwood_data.GetDepthPaths()[0]);
Image color = *t::io::CreateImageFromFile(redwood_data.GetColorPaths()[0]);
auto vbg = VoxelBlockGrid();
EXPECT_THROW(vbg.GetUniqueBlockCoordinates(depth, intrinsic, extrinsics[0],
depth_scale, depth_max),
std::runtime_error);
EXPECT_THROW(vbg.Integrate(core::Tensor(), depth, color, intrinsic,
extrinsics[0]),
std::runtime_error);
EXPECT_THROW(vbg.ExtractTriangleMesh(), std::runtime_error);
EXPECT_THROW(vbg.ExtractPointCloud(), std::runtime_error);
}
TEST_P(VoxelBlockGridPermuteDevices, Indexing) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends = EnumerateBackends(device);
for (auto backend : backends) {
auto vbg = VoxelBlockGrid({"tsdf", "weight", "color"},
{core::Float32, core::UInt16, core::UInt8},
{{1}, {1}, {3}}, 3.0 / 512, 2, 10, device,
backend);
auto hashmap = vbg.GetHashMap();
// Unique Coordinates: (-1, 3, 2), (0, 2, 4), (1, 2, 3)
core::Tensor keys = core::Tensor(
std::vector<int>{-1, 3, 2, 0, 2, 4, -1, 3, 2, 0, 2, 4, 1, 2, 3},
core::SizeVector{5, 3}, core::Dtype::Int32, device);
core::Tensor buf_indices, masks;
hashmap.Activate(keys, buf_indices, masks);
buf_indices = buf_indices.IndexGet({masks});
EXPECT_EQ(buf_indices.GetLength(), 3);
// Non-flattened version, recommended for debugging
int entries_per_block = 2 * 2 * 2;
core::Tensor voxel_indices = vbg.GetVoxelIndices(buf_indices);
EXPECT_EQ(voxel_indices.GetShape(),
core::SizeVector({4, 3 * entries_per_block}));
core::Tensor voxel_coords = vbg.GetVoxelCoordinates(voxel_indices);
EXPECT_EQ(voxel_coords.GetShape(),
core::SizeVector({3, 3 * entries_per_block}));
// Flattened version, recommended for performance
std::tie(voxel_coords, voxel_indices) =
vbg.GetVoxelCoordinatesAndFlattenedIndices();
EXPECT_EQ(voxel_coords.GetShape(),
core::SizeVector({3 * entries_per_block, 3}));
EXPECT_EQ(voxel_indices.GetShape(),
core::SizeVector({3 * entries_per_block}));
}
}
TEST_P(VoxelBlockGridPermuteDevices, GetUniqueBlockCoordinates) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends = EnumerateBackends(device);
core::Tensor intrinsic = GetIntrinsicTensor();
std::vector<core::Tensor> extrinsics = GetExtrinsicTensors();
const float depth_scale = 1000.0;
const float depth_max = 3.0;
const float trunc_voxel_multiplier = 4.0;
for (auto backend : backends) {
auto vbg = VoxelBlockGrid({"tsdf", "weight", "color"},
{core::Float32, core::Float32, core::UInt16},
{{1}, {1}, {3}}, 3.0 / 512, 8, 10000, device,
backend);
const int i = 0;
data::SampleRedwoodRGBDImages redwood_data;
Image depth =
t::io::CreateImageFromFile(redwood_data.GetDepthPaths()[i])
->To(device);
core::Tensor block_coords_from_depth = vbg.GetUniqueBlockCoordinates(
depth, intrinsic, extrinsics[i], depth_scale, depth_max,
trunc_voxel_multiplier);
PointCloud pcd = PointCloud::CreateFromDepthImage(
depth, intrinsic, extrinsics[i], depth_scale, depth_max, 4);
core::Tensor block_coords_from_pcd =
vbg.GetUniqueBlockCoordinates(pcd, trunc_voxel_multiplier);
// Hard-coded result -- implementation could change,
// freeze result of test_data when stable.
EXPECT_EQ(block_coords_from_depth.GetLength(), 4873);
EXPECT_EQ(block_coords_from_pcd.GetLength(), 7491);
}
}
TEST_P(VoxelBlockGridPermuteDevices, Integrate) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends = EnumerateBackends(device);
// Again, hard-coded result
std::unordered_map<int, int> kResolutionPoints = {{8, 225628},
{16, 254787}};
std::unordered_map<int, int> kResolutionVertices = {{8, 223075},
{16, 254339}};
std::unordered_map<int, int> kResolutionTriangles = {{8, 409271},
{16, 490301}};
for (auto backend : backends) {
for (int block_resolution : std::vector<int>{8, 16}) {
for (auto &dtype :
std::vector<core::Dtype>{core::Float32, core::UInt16}) {
auto vbg = Integrate(backend, dtype, device, block_resolution);
// Allow numerical precision differences
auto pcd = vbg.ExtractPointCloud();
EXPECT_NEAR(pcd.GetPointPositions().GetLength(),
kResolutionPoints[block_resolution], 3);
auto mesh = vbg.ExtractTriangleMesh();
EXPECT_NEAR(mesh.GetVertexPositions().GetLength(),
kResolutionVertices[block_resolution], 3);
EXPECT_NEAR(mesh.GetTriangleIndices().GetLength(),
kResolutionTriangles[block_resolution], 6);
}
}
}
}
TEST_P(VoxelBlockGridPermuteDevices, IO) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends = EnumerateBackends(device);
std::string file_name = "tmp.npz";
for (auto backend : backends) {
auto vbg = Integrate(backend, core::UInt16, device, 16);
vbg.Save(file_name);
EXPECT_TRUE(utility::filesystem::FileExists(file_name));
auto pcd = vbg.ExtractPointCloud();
auto vbg_loaded = VoxelBlockGrid::Load(file_name);
auto pcd_loaded = vbg_loaded.ExtractPointCloud();
EXPECT_EQ(pcd.GetPointPositions().GetLength(),
pcd_loaded.GetPointPositions().GetLength());
utility::filesystem::RemoveFile(file_name);
}
}
TEST_P(VoxelBlockGridPermuteDevices, RayCasting) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends =
EnumerateBackends(device, /* include_slab = */ false);
core::Tensor intrinsic = GetIntrinsicTensor();
std::vector<core::Tensor> extrinsics = GetExtrinsicTensors();
const float depth_scale = 1000.0;
const float depth_min = 0.1;
const float depth_max = 3.0;
for (auto backend : backends) {
for (auto &dtype :
std::vector<core::Dtype>{core::Float32, core::UInt16}) {
auto vbg = Integrate(backend, dtype, device,
/* block_resolution = */ 8);
int i = extrinsics.size() - 1;
data::SampleRedwoodRGBDImages redwood_data;
Image depth =
t::io::CreateImageFromFile(redwood_data.GetDepthPaths()[i])
->To(device);
core::Tensor frustum_block_coords = vbg.GetUniqueBlockCoordinates(
depth, intrinsic, extrinsics[i], depth_scale, depth_max);
// Select sets
auto result_odometry =
vbg.RayCast(frustum_block_coords, intrinsic, extrinsics[i],
depth.GetCols(), depth.GetRows(),
{"vertex", "normal", "depth"}, depth_scale,
depth_min, depth_max, 1.0);
EXPECT_TRUE(result_odometry.Contains("vertex"));
EXPECT_TRUE(result_odometry.Contains("normal"));
EXPECT_TRUE(result_odometry.Contains("depth"));
auto result_rendering = vbg.RayCast(
frustum_block_coords, intrinsic, extrinsics[i],
depth.GetCols(), depth.GetRows(), {"depth", "color"},
depth_scale, depth_min, depth_max, 1.0);
EXPECT_TRUE(result_rendering.Contains("depth"));
EXPECT_TRUE(result_rendering.Contains("color"));
auto result_diff_rendering = vbg.RayCast(
frustum_block_coords, intrinsic, extrinsics[i],
depth.GetCols(), depth.GetRows(),
{"index", "mask", "interp_ratio", "interp_ratio_dx",
"interp_ratio_dy", "interp_ratio_dz"},
depth_scale, depth_min, depth_max, 1.0);
EXPECT_TRUE(result_diff_rendering.Contains("index"));
EXPECT_TRUE(result_diff_rendering.Contains("mask"));
EXPECT_TRUE(result_diff_rendering.Contains("interp_ratio"));
EXPECT_TRUE(result_diff_rendering.Contains("interp_ratio_dx"));
EXPECT_TRUE(result_diff_rendering.Contains("interp_ratio_dy"));
EXPECT_TRUE(result_diff_rendering.Contains("interp_ratio_dz"));
}
}
}
TEST_P(VoxelBlockGridPermuteDevices, DISABLED_RayCastingVisualize) {
core::Device device = GetParam();
std::vector<core::HashBackendType> backends =
EnumerateBackends(device, /* include_slab = */ false);
core::Tensor intrinsic = GetIntrinsicTensor();
std::vector<core::Tensor> extrinsics = GetExtrinsicTensors();
const float depth_scale = 1000.0;
const float depth_min = 0.1;
const float depth_max = 3.0;
for (auto backend : backends) {
for (auto &dtype : std::vector<core::Dtype>{core::Float32}) {
auto vbg = Integrate(backend, dtype, device,
/* block_resolution = */ 8);
int i = extrinsics.size() - 1;
data::SampleRedwoodRGBDImages redwood_data;
Image depth =
t::io::CreateImageFromFile(redwood_data.GetDepthPaths()[i])
->To(device);
core::Tensor frustum_block_coords = vbg.GetUniqueBlockCoordinates(
depth, intrinsic, extrinsics[i], depth_scale, depth_max);
int width = depth.GetCols();
int height = depth.GetRows();
// Select sets
auto result =
vbg.RayCast(frustum_block_coords, intrinsic, extrinsics[i],
width, height,
{"vertex", "normal", "depth", "color", "index",
"mask", "interp_ratio", "interp_ratio_dx",
"interp_ratio_dy", "interp_ratio_dz"},
depth_scale, depth_min, depth_max, 1.0);
auto to_legacy_ptr = [=](const Image &im_t) {
return std::make_shared<open3d::geometry::Image>(
im_t.ToLegacy());
};
// Conventional rendering
visualization::DrawGeometries(
{to_legacy_ptr(Image(result["vertex"]))});
visualization::DrawGeometries(
{to_legacy_ptr(Image(result["normal"]))});
visualization::DrawGeometries({to_legacy_ptr(
Image(result["depth"]).ColorizeDepth(1000.0, 0, 4))});
visualization::DrawGeometries(
{to_legacy_ptr(Image(result["color"]))});
// Differentiable rendering
// Render color
auto color_tensor = vbg.GetAttribute("color").Reshape({-1, 3});
// (H * W * 8)
core::Tensor nb_indices =
result["index"].Reshape(core::SizeVector({-1}));
// (H * W * 8, 3)
core::Tensor nb_colors = color_tensor.IndexGet({nb_indices});
// (H * W * 8, 1)
core::Tensor nb_interp_ratio =
result["interp_ratio"].Reshape(core::SizeVector({-1, 1}));
// (H, W, 3)
core::Tensor nb_sum_color =
(nb_colors * nb_interp_ratio)
.Reshape(core::SizeVector({height, width, 8, 3}))
.Sum({2});
visualization::DrawGeometries(
{to_legacy_ptr(Image(nb_sum_color / 255.0))});
// Render normal
auto tsdf_tensor = vbg.GetAttribute("tsdf").Reshape({-1, 1});
// (H * W * 8, 1)
core::Tensor nb_tsdfs = tsdf_tensor.IndexGet({nb_indices});
core::Tensor nb_interp_ratio_dx = result["interp_ratio_dx"].Reshape(
core::SizeVector({-1, 1}));
core::Tensor nb_interp_ratio_dy = result["interp_ratio_dy"].Reshape(
core::SizeVector({-1, 1}));
core::Tensor nb_interp_ratio_dz = result["interp_ratio_dz"].Reshape(
core::SizeVector({-1, 1}));
// (H * W * 8, 1)
core::Tensor nx = nb_interp_ratio_dx * nb_tsdfs;
core::Tensor ny = nb_interp_ratio_dy * nb_tsdfs;
core::Tensor nz = nb_interp_ratio_dz * nb_tsdfs;
// (H * W) x 3
nx = nx.Reshape(core::SizeVector({height * width, 8})).Sum({1});
ny = ny.Reshape(core::SizeVector({height * width, 8})).Sum({1});
nz = nz.Reshape(core::SizeVector({height * width, 8})).Sum({1});
core::Tensor norm = (nx * nx + ny * ny + nz * nz).Sqrt();
nx = nx / norm;
ny = ny / norm;
nz = nz / norm;
core::Tensor normals = core::Tensor({3, height * width},
core::Dtype::Float32, device);
normals.SetItem({core::TensorKey::Index(0)}, nx);
normals.SetItem({core::TensorKey::Index(1)}, ny);
normals.SetItem({core::TensorKey::Index(2)}, nz);
normals =
normals.T().Reshape({height, width, 3}).Contiguous().Neg_();
visualization::DrawGeometries({to_legacy_ptr(normals)});
}
}
}
} // namespace tests
} // namespace open3d
|