File: TICPSequentialConfigLyft.txt

package info (click to toggle)
open3d 0.16.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,688 kB
  • sloc: cpp: 193,088; python: 24,973; ansic: 8,356; javascript: 1,869; sh: 1,473; makefile: 236; xml: 69
file content (45 lines) | stat: -rw-r--r-- 1,333 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# This is a config file for the `TICPSequential.cpp` Example.
# When voxel_size is -1, no downsampling is performed.
# To run TICPSequential:
# 1. Download the Lyft dataset convert it to .pcd or .ply format.
# 2. Change the `dataset_path` accordingly.
# 4. Go to build/bin/examples
# 5. Run the following command:
# ./TICPSequential CPU:0 ../../../examples/cpp/registration_example_util/TICPSequentialConfigLyft.txt
# Change CPU:0 to CUDA:0 for running it on primary GPU.

# option to turn ON / OFF visualization:
visualization = ON
visualization_min = -1.0
visualization_max = 10.0

# Verbosity can be Info, Debug.
verbosity = Info

# Path of the downloaded dataset containing frames in .pcd or .ply format.
dataset_path = ../../../examples/test_data/open3d_downloads/datasets/lyft_samples/output/

# Range of frames is start_index to end_index.
start_index = 0
end_index = 500

# Registration method can be PointToPoint or PointToPlane.
registration_method = PointToPlane

# Multi-Scale ICP parameters:

# Scale 1:
 voxel_size = 1.5
 search_radii = 3.0
 criteria.relative_fitness = 0.01
 criteria.relative_rmse = 0.01
 criteria.max_iterations = 10

# Scale 2:
 voxel_size = 0.8
 search_radii = 2.0
 criteria.relative_fitness = 0.001
 criteria.relative_rmse = 0.001
 criteria.max_iterations = 10

# One can also add more scales ...