File: benchmark_fgr.py

package info (click to toggle)
open3d 0.16.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,688 kB
  • sloc: cpp: 193,088; python: 24,973; ansic: 8,356; javascript: 1,869; sh: 1,473; makefile: 236; xml: 69
file content (102 lines) | stat: -rw-r--r-- 4,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------

import os
import sys
import numpy as np

pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(pyexample_path)

from open3d_example import *

do_visualization = False


def execute_fast_global_registration(source_down, target_down, source_fpfh,
                                     target_fpfh, voxel_size):
    distance_threshold = voxel_size * 0.5
    print(":: Apply fast global registration with distance threshold %.3f" \
            % distance_threshold)
    result = o3d.pipelines.registration.registration_fgr_based_on_feature_matching(
        source_down, target_down, source_fpfh, target_fpfh,
        o3d.pipelines.registration.FastGlobalRegistrationOption(
            maximum_correspondence_distance=distance_threshold))
    return result


def preprocess_point_cloud(pcd, voxel_size):
    print(":: Downsample with a voxel size %.3f." % voxel_size)
    pcd_down = pcd.voxel_down_sample(voxel_size)

    radius_normal = voxel_size * 2
    print(":: Estimate normal with search radius %.3f." % radius_normal)
    pcd_down.estimate_normals(
        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))

    radius_feature = voxel_size * 5
    print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
    pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
        pcd_down,
        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))
    return pcd_down, pcd_fpfh


if __name__ == "__main__":
    # data preparation
    dataset = o3d.data.LivingRoomPointClouds()
    n_ply_files = len(dataset.paths)
    voxel_size = 0.05

    alignment = []
    for s in range(n_ply_files):
        for t in range(s + 1, n_ply_files):
            print("LivingRoomPointClouds:: matching %d-%d" % (s, t))
            source = o3d.io.read_point_cloud(dataset.paths[s])
            target = o3d.io.read_point_cloud(dataset.paths[t])
            source_down, source_fpfh = preprocess_point_cloud(
                source, voxel_size)
            target_down, target_fpfh = preprocess_point_cloud(
                target, voxel_size)

            result = execute_fast_global_registration(source_down, target_down,
                                                      source_fpfh, target_fpfh,
                                                      voxel_size)
            if (result.transformation.trace() == 4.0):
                success = False
            else:
                success = True

            # Note: we save inverse of result_ransac.transformation
            # to comply with http://redwood-data.org/indoor/fileformat.html
            alignment.append(
                CameraPose([s, t, n_ply_files],
                           np.linalg.inv(result.transformation)))
            print(np.linalg.inv(result.transformation))

            if do_visualization:
                draw_registration_result(source_down, target_down,
                                         result.transformation)