1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
import os
import platform
import subprocess
import numpy as np
import tabulate
import nvidia_smi
def get_processor_name():
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin'
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command).strip()
elif platform.system() == "Linux":
command = "cat /proc/cpuinfo | grep 'model name' -m 1"
name = subprocess.check_output(command, shell=True).strip()
return str(name, 'utf-8')
def run_command(command):
result = subprocess.run(command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
shell=True)
return result.stdout.strip()
def print_system_info():
# print results
nvcc_version = run_command("nvcc --version")
os_version = run_command("cat /etc/os-release")
cpu_info = get_processor_name()
gpu_info = run_command("nvidia-smi")
print("======System Info======")
print("[CUDA]")
print(nvcc_version)
print("")
print("[OS]")
print(os_version)
print("")
print("[CPU]")
print(cpu_info)
print("")
print("[GPU]")
print(gpu_info)
print("======System Info [End]=")
def measure_time(fn, min_samples=10, max_samples=100, max_time_in_sec=10.0):
"""Measure time to run fn. Returns the elapsed time each run."""
from time import perf_counter_ns
t = []
for i in range(max_samples):
if sum(t) / 1e9 >= max_time_in_sec and i >= min_samples:
break
t.append(-perf_counter_ns())
try:
ans = fn()
except Exception as e:
print(e)
return np.array([np.nan])
t[-1] += perf_counter_ns()
del ans
print('.', end='')
return np.array(t) / 1e9
def measure_memory(fn, handle):
"""Measure memory to run fn. Returns the maximum allocated memory each run."""
try:
_ = fn()
except Exception as e:
print(e)
return np.nan
info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
memory = info.used / 1000. / 1000. / 1000.
print('.', end='')
return memory
def print_table(methods, results):
headers = [''] + [f'{n}_setup' for n in methods
] + [f'{n}_search' for n in methods]
rows = []
for x in results[0]:
r = [x] + list(
map(np.median, [r[x]['setup'] for r in results] +
[r[x]['search'] for r in results]))
rows.append(r)
print(tabulate.tabulate(rows, headers=headers))
def print_table_simple(methods, results):
headers = [''] + [f'{n}_search' for n in methods]
rows = []
for x in results[0]:
r = [x] + list(map(np.median, [r[x]['search'] for r in results]))
rows.append(r)
print(tabulate.tabulate(rows, headers=headers))
def print_table_memory(methods, results):
headers = [''] + [f'{n}' for n in methods]
rows = []
for x in results[0]:
r = [x] + list(map(np.median, [r[x]['memory'] for r in results]))
rows.append(r)
print(tabulate.tabulate(rows, headers=headers))
def sample_points(points, num_sample):
if points.shape[0] < num_sample:
num_sample = points.shape[0]
idx = np.round(np.linspace(0, len(points) - 1, num_sample)).astype(int)
return points[idx]
|