1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
# examples/python/reconstruction_system/make_fragments.py
import math
import os, sys
import numpy as np
import open3d as o3d
pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(pyexample_path)
from open3d_example import *
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from optimize_posegraph import optimize_posegraph_for_fragment
# check opencv python package
with_opencv = initialize_opencv()
if with_opencv:
from opencv_pose_estimation import pose_estimation
def register_one_rgbd_pair(s, t, color_files, depth_files, intrinsic,
with_opencv, config):
source_rgbd_image = read_rgbd_image(color_files[s], depth_files[s], True,
config)
target_rgbd_image = read_rgbd_image(color_files[t], depth_files[t], True,
config)
option = o3d.pipelines.odometry.OdometryOption()
option.depth_diff_max = config["depth_diff_max"]
if abs(s - t) != 1:
if with_opencv:
success_5pt, odo_init = pose_estimation(source_rgbd_image,
target_rgbd_image,
intrinsic, False)
if success_5pt:
[success, trans, info
] = o3d.pipelines.odometry.compute_rgbd_odometry(
source_rgbd_image, target_rgbd_image, intrinsic, odo_init,
o3d.pipelines.odometry.RGBDOdometryJacobianFromHybridTerm(),
option)
return [success, trans, info]
return [False, np.identity(4), np.identity(6)]
else:
odo_init = np.identity(4)
[success, trans, info] = o3d.pipelines.odometry.compute_rgbd_odometry(
source_rgbd_image, target_rgbd_image, intrinsic, odo_init,
o3d.pipelines.odometry.RGBDOdometryJacobianFromHybridTerm(), option)
return [success, trans, info]
def make_posegraph_for_fragment(path_dataset, sid, eid, color_files,
depth_files, fragment_id, n_fragments,
intrinsic, with_opencv, config):
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
pose_graph = o3d.pipelines.registration.PoseGraph()
trans_odometry = np.identity(4)
pose_graph.nodes.append(
o3d.pipelines.registration.PoseGraphNode(trans_odometry))
for s in range(sid, eid):
for t in range(s + 1, eid):
# odometry
if t == s + 1:
print(
"Fragment %03d / %03d :: RGBD matching between frame : %d and %d"
% (fragment_id, n_fragments - 1, s, t))
[success, trans,
info] = register_one_rgbd_pair(s, t, color_files, depth_files,
intrinsic, with_opencv, config)
trans_odometry = np.dot(trans, trans_odometry)
trans_odometry_inv = np.linalg.inv(trans_odometry)
pose_graph.nodes.append(
o3d.pipelines.registration.PoseGraphNode(
trans_odometry_inv))
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(s - sid,
t - sid,
trans,
info,
uncertain=False))
# keyframe loop closure
if s % config['n_keyframes_per_n_frame'] == 0 \
and t % config['n_keyframes_per_n_frame'] == 0:
print(
"Fragment %03d / %03d :: RGBD matching between frame : %d and %d"
% (fragment_id, n_fragments - 1, s, t))
[success, trans,
info] = register_one_rgbd_pair(s, t, color_files, depth_files,
intrinsic, with_opencv, config)
if success:
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(
s - sid, t - sid, trans, info, uncertain=True))
o3d.io.write_pose_graph(
join(path_dataset, config["template_fragment_posegraph"] % fragment_id),
pose_graph)
def integrate_rgb_frames_for_fragment(color_files, depth_files, fragment_id,
n_fragments, pose_graph_name, intrinsic,
config):
pose_graph = o3d.io.read_pose_graph(pose_graph_name)
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=config["tsdf_cubic_size"] / 512.0,
sdf_trunc=0.04,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8)
for i in range(len(pose_graph.nodes)):
i_abs = fragment_id * config['n_frames_per_fragment'] + i
print(
"Fragment %03d / %03d :: integrate rgbd frame %d (%d of %d)." %
(fragment_id, n_fragments - 1, i_abs, i + 1, len(pose_graph.nodes)))
rgbd = read_rgbd_image(color_files[i_abs], depth_files[i_abs], False,
config)
pose = pose_graph.nodes[i].pose
volume.integrate(rgbd, intrinsic, np.linalg.inv(pose))
mesh = volume.extract_triangle_mesh()
mesh.compute_vertex_normals()
return mesh
def make_pointcloud_for_fragment(path_dataset, color_files, depth_files,
fragment_id, n_fragments, intrinsic, config):
mesh = integrate_rgb_frames_for_fragment(
color_files, depth_files, fragment_id, n_fragments,
join(path_dataset,
config["template_fragment_posegraph_optimized"] % fragment_id),
intrinsic, config)
pcd = o3d.geometry.PointCloud()
pcd.points = mesh.vertices
pcd.colors = mesh.vertex_colors
pcd_name = join(path_dataset,
config["template_fragment_pointcloud"] % fragment_id)
o3d.io.write_point_cloud(pcd_name, pcd, False, True)
def process_single_fragment(fragment_id, color_files, depth_files, n_files,
n_fragments, config):
if config["path_intrinsic"]:
intrinsic = o3d.io.read_pinhole_camera_intrinsic(
config["path_intrinsic"])
else:
intrinsic = o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)
sid = fragment_id * config['n_frames_per_fragment']
eid = min(sid + config['n_frames_per_fragment'], n_files)
make_posegraph_for_fragment(config["path_dataset"], sid, eid, color_files,
depth_files, fragment_id, n_fragments,
intrinsic, with_opencv, config)
optimize_posegraph_for_fragment(config["path_dataset"], fragment_id, config)
make_pointcloud_for_fragment(config["path_dataset"], color_files,
depth_files, fragment_id, n_fragments,
intrinsic, config)
def run(config):
print("making fragments from RGBD sequence.")
make_clean_folder(join(config["path_dataset"], config["folder_fragment"]))
[color_files, depth_files] = get_rgbd_file_lists(config["path_dataset"])
n_files = len(color_files)
n_fragments = int(
math.ceil(float(n_files) / config['n_frames_per_fragment']))
if config["python_multi_threading"] is True:
from joblib import Parallel, delayed
import multiprocessing
import subprocess
MAX_THREAD = min(multiprocessing.cpu_count(), n_fragments)
Parallel(n_jobs=MAX_THREAD)(delayed(process_single_fragment)(
fragment_id, color_files, depth_files, n_files, n_fragments, config)
for fragment_id in range(n_fragments))
else:
for fragment_id in range(n_fragments):
process_single_fragment(fragment_id, color_files, depth_files,
n_files, n_fragments, config)
|