File: opencv_pose_estimation.py

package info (click to toggle)
open3d 0.16.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,688 kB
  • sloc: cpp: 193,088; python: 24,973; ansic: 8,356; javascript: 1,869; sh: 1,473; makefile: 236; xml: 69
file content (277 lines) | stat: -rw-r--r-- 10,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------

# examples/python/reconstruction_system/opencv_pose_estimation.py

# following code is tested with OpenCV 3.2.0 and Python2.7
# how to install opencv
# conda create --prefix py27opencv python=2.7
# source activate py27opencv
# conda install -c conda-forge opencv
# conda install -c conda-forge openblas (if openblas conflicts)

import numpy as np
import cv2
from matplotlib import pyplot as plt  # for visualizing feature matching
import copy


def pose_estimation(source_rgbd_image, target_rgbd_image,
                    pinhole_camera_intrinsic, debug_draw_correspondences):
    success = False
    trans = np.identity(4)

    # transform double array to unit8 array
    color_cv_s = np.uint8(np.asarray(source_rgbd_image.color) * 255.0)
    color_cv_t = np.uint8(np.asarray(target_rgbd_image.color) * 255.0)

    orb = cv2.ORB_create(scaleFactor=1.2,
                         nlevels=8,
                         edgeThreshold=31,
                         firstLevel=0,
                         WTA_K=2,
                         scoreType=cv2.ORB_HARRIS_SCORE,
                         nfeatures=100,
                         patchSize=31)  # to save time
    [kp_s, des_s] = orb.detectAndCompute(color_cv_s, None)
    [kp_t, des_t] = orb.detectAndCompute(color_cv_t, None)
    if len(kp_s) == 0 or len(kp_t) == 0:
        return success, trans

    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    matches = bf.match(des_s, des_t)

    pts_s = []
    pts_t = []
    for match in matches:
        pts_t.append(kp_t[match.trainIdx].pt)
        pts_s.append(kp_s[match.queryIdx].pt)
    pts_s = np.asarray(pts_s)
    pts_t = np.asarray(pts_t)
    # inlier points after initial BF matching
    if debug_draw_correspondences:
        draw_correspondences(np.asarray(source_rgbd_image.color),
                             np.asarray(target_rgbd_image.color), pts_s, pts_t,
                             np.ones(pts_s.shape[0]), "Initial BF matching")

    focal_input = (pinhole_camera_intrinsic.intrinsic_matrix[0, 0] +
                   pinhole_camera_intrinsic.intrinsic_matrix[1, 1]) / 2.0
    pp_x = pinhole_camera_intrinsic.intrinsic_matrix[0, 2]
    pp_y = pinhole_camera_intrinsic.intrinsic_matrix[1, 2]

    # Essential matrix is made for masking inliers
    pts_s_int = np.int32(pts_s + 0.5)
    pts_t_int = np.int32(pts_t + 0.5)
    [E, mask] = cv2.findEssentialMat(pts_s_int,
                                     pts_t_int,
                                     focal=focal_input,
                                     pp=(pp_x, pp_y),
                                     method=cv2.RANSAC,
                                     prob=0.999,
                                     threshold=1.0)
    if mask is None:
        return success, trans

    # inlier points after 5pt algorithm
    if debug_draw_correspondences:
        draw_correspondences(np.asarray(source_rgbd_image.color),
                             np.asarray(target_rgbd_image.color), pts_s, pts_t,
                             mask, "5-pt RANSAC")

    # make 3D correspondences
    depth_s = np.asarray(source_rgbd_image.depth)
    depth_t = np.asarray(target_rgbd_image.depth)
    pts_xyz_s = np.zeros([3, pts_s.shape[0]])
    pts_xyz_t = np.zeros([3, pts_s.shape[0]])
    cnt = 0
    for i in range(pts_s.shape[0]):
        if mask[i]:
            xyz_s = get_xyz_from_pts(pts_s[i, :], depth_s, pp_x, pp_y,
                                     focal_input)
            pts_xyz_s[:, cnt] = xyz_s
            xyz_t = get_xyz_from_pts(pts_t[i, :], depth_t, pp_x, pp_y,
                                     focal_input)
            pts_xyz_t[:, cnt] = xyz_t
            cnt = cnt + 1
    pts_xyz_s = pts_xyz_s[:, :cnt]
    pts_xyz_t = pts_xyz_t[:, :cnt]

    success, trans, inlier_id_vec = estimate_3D_transform_RANSAC(
        pts_xyz_s, pts_xyz_t)

    if debug_draw_correspondences:
        pts_s_new = np.zeros(shape=(len(inlier_id_vec), 2))
        pts_t_new = np.zeros(shape=(len(inlier_id_vec), 2))
        mask = np.ones(len(inlier_id_vec))
        cnt = 0
        for i in inlier_id_vec:
            u_s, v_s = get_uv_from_xyz(pts_xyz_s[0, i], pts_xyz_s[1, i],
                                       pts_xyz_s[2, i], pp_x, pp_y, focal_input)
            u_t, v_t = get_uv_from_xyz(pts_xyz_t[0, i], pts_xyz_t[1, i],
                                       pts_xyz_t[2, i], pp_x, pp_y, focal_input)
            pts_s_new[cnt, :] = [u_s, v_s]
            pts_t_new[cnt, :] = [u_t, v_t]
            cnt = cnt + 1
        draw_correspondences(np.asarray(source_rgbd_image.color),
                             np.asarray(target_rgbd_image.color), pts_s_new,
                             pts_t_new, mask, "5-pt RANSAC + 3D Rigid RANSAC")
    return success, trans


def draw_correspondences(img_s, img_t, pts_s, pts_t, mask, title):
    ha, wa = img_s.shape[:2]
    hb, wb = img_t.shape[:2]
    total_width = wa + wb
    new_img = np.zeros(shape=(ha, total_width))
    new_img[:ha, :wa] = img_s
    new_img[:hb, wa:wa + wb] = img_t

    fig = plt.figure()
    fig.canvas.set_window_title(title)
    for i in range(pts_s.shape[0]):
        if mask[i]:
            sx = pts_s[i, 0]
            sy = pts_s[i, 1]
            tx = pts_t[i, 0] + wa
            ty = pts_t[i, 1]
            plt.plot([sx, tx], [sy, ty],
                     color=np.random.random(3) / 2 + 0.5,
                     lw=1.0)
    plt.imshow(new_img)
    plt.pause(0.5)
    plt.close()


def estimate_3D_transform_RANSAC(pts_xyz_s, pts_xyz_t):
    max_iter = 1000
    max_distance = 0.05
    n_sample = 5
    n_points = pts_xyz_s.shape[1]
    Transform_good = np.identity(4)
    max_inlier = n_sample
    inlier_vec_good = []
    success = False

    if n_points < n_sample:
        return False, np.identity(4), []

    for i in range(max_iter):

        # sampling
        rand_idx = np.random.randint(n_points, size=n_sample)
        sample_xyz_s = pts_xyz_s[:, rand_idx]
        sample_xyz_t = pts_xyz_t[:, rand_idx]
        R_approx, t_approx = estimate_3D_transform(sample_xyz_s, sample_xyz_t)

        # evaluation
        diff_mat = pts_xyz_t - (np.matmul(R_approx, pts_xyz_s) +
                                np.tile(t_approx, [1, n_points]))
        diff = [np.linalg.norm(diff_mat[:, i]) for i in range(n_points)]
        n_inlier = len([1 for diff_iter in diff if diff_iter < max_distance])

        # note: diag(R_approx) > 0 prevents ankward transformation between
        # RGBD pair of relatively small amount of baseline.
        if (n_inlier > max_inlier) and (np.linalg.det(R_approx) != 0.0) and \
                (R_approx[0,0] > 0 and R_approx[1,1] > 0 and R_approx[2,2] > 0):
            Transform_good[:3, :3] = R_approx
            Transform_good[:3, 3] = [t_approx[0], t_approx[1], t_approx[2]]
            max_inlier = n_inlier
            inlier_vec = [id_iter for diff_iter, id_iter \
                    in zip(diff, range(n_points)) \
                    if diff_iter < max_distance]
            inlier_vec_good = inlier_vec
            success = True

    return success, Transform_good, inlier_vec_good


# singular value decomposition approach
# based on the description in the sec 3.1.2 in
# http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf
def estimate_3D_transform(input_xyz_s, input_xyz_t):
    # compute H
    xyz_s = copy.copy(input_xyz_s)
    xyz_t = copy.copy(input_xyz_t)
    n_points = xyz_s.shape[1]
    mean_s = np.mean(xyz_s, axis=1)
    mean_t = np.mean(xyz_t, axis=1)
    mean_s.shape = (3, 1)
    mean_t.shape = (3, 1)
    xyz_diff_s = xyz_s - np.tile(mean_s, [1, n_points])
    xyz_diff_t = xyz_t - np.tile(mean_t, [1, n_points])
    H = np.matmul(xyz_diff_s, xyz_diff_t.transpose())
    # solve system
    U, s, V = np.linalg.svd(H)
    R_approx = np.matmul(V.transpose(), U.transpose())
    if np.linalg.det(R_approx) < 0.0:
        det = np.linalg.det(np.matmul(U, V))
        D = np.identity(3)
        D[2, 2] = det
        R_approx = np.matmul(U, np.matmul(D, V))
    t_approx = mean_t - np.matmul(R_approx, mean_s)
    return R_approx, t_approx


def get_xyz_from_pts(pts_row, depth, px, py, focal):
    u = pts_row[0]
    v = pts_row[1]
    u0 = int(u)
    v0 = int(v)
    height = depth.shape[0]
    width = depth.shape[1]
    # bilinear depth interpolation
    if u0 > 0 and u0 < width - 1 and v0 > 0 and v0 < height - 1:
        up = pts_row[0] - u0
        vp = pts_row[1] - v0
        d0 = depth[v0, u0]
        d1 = depth[v0, u0 + 1]
        d2 = depth[v0 + 1, u0]
        d3 = depth[v0 + 1, u0 + 1]
        d = (1 - vp) * (d1 * up + d0 * (1 - up)) + vp * (d3 * up + d2 *
                                                         (1 - up))
        return get_xyz_from_uv(u, v, d, px, py, focal)
    else:
        return [0, 0, 0]


def get_xyz_from_uv(u, v, d, px, py, focal):
    if focal != 0:
        x = (u - px) / focal * d
        y = (v - py) / focal * d
    else:
        x = 0
        y = 0
    return np.array([x, y, d]).transpose()


def get_uv_from_xyz(x, y, z, px, py, focal):
    if z != 0:
        u = focal * x / z + px
        v = focal * y / z + py
    else:
        u = 0
        v = 0
    return u, v