1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
# examples/python/reconstruction_system/opencv_pose_estimation.py
# following code is tested with OpenCV 3.2.0 and Python2.7
# how to install opencv
# conda create --prefix py27opencv python=2.7
# source activate py27opencv
# conda install -c conda-forge opencv
# conda install -c conda-forge openblas (if openblas conflicts)
import numpy as np
import cv2
from matplotlib import pyplot as plt # for visualizing feature matching
import copy
def pose_estimation(source_rgbd_image, target_rgbd_image,
pinhole_camera_intrinsic, debug_draw_correspondences):
success = False
trans = np.identity(4)
# transform double array to unit8 array
color_cv_s = np.uint8(np.asarray(source_rgbd_image.color) * 255.0)
color_cv_t = np.uint8(np.asarray(target_rgbd_image.color) * 255.0)
orb = cv2.ORB_create(scaleFactor=1.2,
nlevels=8,
edgeThreshold=31,
firstLevel=0,
WTA_K=2,
scoreType=cv2.ORB_HARRIS_SCORE,
nfeatures=100,
patchSize=31) # to save time
[kp_s, des_s] = orb.detectAndCompute(color_cv_s, None)
[kp_t, des_t] = orb.detectAndCompute(color_cv_t, None)
if len(kp_s) == 0 or len(kp_t) == 0:
return success, trans
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des_s, des_t)
pts_s = []
pts_t = []
for match in matches:
pts_t.append(kp_t[match.trainIdx].pt)
pts_s.append(kp_s[match.queryIdx].pt)
pts_s = np.asarray(pts_s)
pts_t = np.asarray(pts_t)
# inlier points after initial BF matching
if debug_draw_correspondences:
draw_correspondences(np.asarray(source_rgbd_image.color),
np.asarray(target_rgbd_image.color), pts_s, pts_t,
np.ones(pts_s.shape[0]), "Initial BF matching")
focal_input = (pinhole_camera_intrinsic.intrinsic_matrix[0, 0] +
pinhole_camera_intrinsic.intrinsic_matrix[1, 1]) / 2.0
pp_x = pinhole_camera_intrinsic.intrinsic_matrix[0, 2]
pp_y = pinhole_camera_intrinsic.intrinsic_matrix[1, 2]
# Essential matrix is made for masking inliers
pts_s_int = np.int32(pts_s + 0.5)
pts_t_int = np.int32(pts_t + 0.5)
[E, mask] = cv2.findEssentialMat(pts_s_int,
pts_t_int,
focal=focal_input,
pp=(pp_x, pp_y),
method=cv2.RANSAC,
prob=0.999,
threshold=1.0)
if mask is None:
return success, trans
# inlier points after 5pt algorithm
if debug_draw_correspondences:
draw_correspondences(np.asarray(source_rgbd_image.color),
np.asarray(target_rgbd_image.color), pts_s, pts_t,
mask, "5-pt RANSAC")
# make 3D correspondences
depth_s = np.asarray(source_rgbd_image.depth)
depth_t = np.asarray(target_rgbd_image.depth)
pts_xyz_s = np.zeros([3, pts_s.shape[0]])
pts_xyz_t = np.zeros([3, pts_s.shape[0]])
cnt = 0
for i in range(pts_s.shape[0]):
if mask[i]:
xyz_s = get_xyz_from_pts(pts_s[i, :], depth_s, pp_x, pp_y,
focal_input)
pts_xyz_s[:, cnt] = xyz_s
xyz_t = get_xyz_from_pts(pts_t[i, :], depth_t, pp_x, pp_y,
focal_input)
pts_xyz_t[:, cnt] = xyz_t
cnt = cnt + 1
pts_xyz_s = pts_xyz_s[:, :cnt]
pts_xyz_t = pts_xyz_t[:, :cnt]
success, trans, inlier_id_vec = estimate_3D_transform_RANSAC(
pts_xyz_s, pts_xyz_t)
if debug_draw_correspondences:
pts_s_new = np.zeros(shape=(len(inlier_id_vec), 2))
pts_t_new = np.zeros(shape=(len(inlier_id_vec), 2))
mask = np.ones(len(inlier_id_vec))
cnt = 0
for i in inlier_id_vec:
u_s, v_s = get_uv_from_xyz(pts_xyz_s[0, i], pts_xyz_s[1, i],
pts_xyz_s[2, i], pp_x, pp_y, focal_input)
u_t, v_t = get_uv_from_xyz(pts_xyz_t[0, i], pts_xyz_t[1, i],
pts_xyz_t[2, i], pp_x, pp_y, focal_input)
pts_s_new[cnt, :] = [u_s, v_s]
pts_t_new[cnt, :] = [u_t, v_t]
cnt = cnt + 1
draw_correspondences(np.asarray(source_rgbd_image.color),
np.asarray(target_rgbd_image.color), pts_s_new,
pts_t_new, mask, "5-pt RANSAC + 3D Rigid RANSAC")
return success, trans
def draw_correspondences(img_s, img_t, pts_s, pts_t, mask, title):
ha, wa = img_s.shape[:2]
hb, wb = img_t.shape[:2]
total_width = wa + wb
new_img = np.zeros(shape=(ha, total_width))
new_img[:ha, :wa] = img_s
new_img[:hb, wa:wa + wb] = img_t
fig = plt.figure()
fig.canvas.set_window_title(title)
for i in range(pts_s.shape[0]):
if mask[i]:
sx = pts_s[i, 0]
sy = pts_s[i, 1]
tx = pts_t[i, 0] + wa
ty = pts_t[i, 1]
plt.plot([sx, tx], [sy, ty],
color=np.random.random(3) / 2 + 0.5,
lw=1.0)
plt.imshow(new_img)
plt.pause(0.5)
plt.close()
def estimate_3D_transform_RANSAC(pts_xyz_s, pts_xyz_t):
max_iter = 1000
max_distance = 0.05
n_sample = 5
n_points = pts_xyz_s.shape[1]
Transform_good = np.identity(4)
max_inlier = n_sample
inlier_vec_good = []
success = False
if n_points < n_sample:
return False, np.identity(4), []
for i in range(max_iter):
# sampling
rand_idx = np.random.randint(n_points, size=n_sample)
sample_xyz_s = pts_xyz_s[:, rand_idx]
sample_xyz_t = pts_xyz_t[:, rand_idx]
R_approx, t_approx = estimate_3D_transform(sample_xyz_s, sample_xyz_t)
# evaluation
diff_mat = pts_xyz_t - (np.matmul(R_approx, pts_xyz_s) +
np.tile(t_approx, [1, n_points]))
diff = [np.linalg.norm(diff_mat[:, i]) for i in range(n_points)]
n_inlier = len([1 for diff_iter in diff if diff_iter < max_distance])
# note: diag(R_approx) > 0 prevents ankward transformation between
# RGBD pair of relatively small amount of baseline.
if (n_inlier > max_inlier) and (np.linalg.det(R_approx) != 0.0) and \
(R_approx[0,0] > 0 and R_approx[1,1] > 0 and R_approx[2,2] > 0):
Transform_good[:3, :3] = R_approx
Transform_good[:3, 3] = [t_approx[0], t_approx[1], t_approx[2]]
max_inlier = n_inlier
inlier_vec = [id_iter for diff_iter, id_iter \
in zip(diff, range(n_points)) \
if diff_iter < max_distance]
inlier_vec_good = inlier_vec
success = True
return success, Transform_good, inlier_vec_good
# singular value decomposition approach
# based on the description in the sec 3.1.2 in
# http://graphics.stanford.edu/~smr/ICP/comparison/eggert_comparison_mva97.pdf
def estimate_3D_transform(input_xyz_s, input_xyz_t):
# compute H
xyz_s = copy.copy(input_xyz_s)
xyz_t = copy.copy(input_xyz_t)
n_points = xyz_s.shape[1]
mean_s = np.mean(xyz_s, axis=1)
mean_t = np.mean(xyz_t, axis=1)
mean_s.shape = (3, 1)
mean_t.shape = (3, 1)
xyz_diff_s = xyz_s - np.tile(mean_s, [1, n_points])
xyz_diff_t = xyz_t - np.tile(mean_t, [1, n_points])
H = np.matmul(xyz_diff_s, xyz_diff_t.transpose())
# solve system
U, s, V = np.linalg.svd(H)
R_approx = np.matmul(V.transpose(), U.transpose())
if np.linalg.det(R_approx) < 0.0:
det = np.linalg.det(np.matmul(U, V))
D = np.identity(3)
D[2, 2] = det
R_approx = np.matmul(U, np.matmul(D, V))
t_approx = mean_t - np.matmul(R_approx, mean_s)
return R_approx, t_approx
def get_xyz_from_pts(pts_row, depth, px, py, focal):
u = pts_row[0]
v = pts_row[1]
u0 = int(u)
v0 = int(v)
height = depth.shape[0]
width = depth.shape[1]
# bilinear depth interpolation
if u0 > 0 and u0 < width - 1 and v0 > 0 and v0 < height - 1:
up = pts_row[0] - u0
vp = pts_row[1] - v0
d0 = depth[v0, u0]
d1 = depth[v0, u0 + 1]
d2 = depth[v0 + 1, u0]
d3 = depth[v0 + 1, u0 + 1]
d = (1 - vp) * (d1 * up + d0 * (1 - up)) + vp * (d3 * up + d2 *
(1 - up))
return get_xyz_from_uv(u, v, d, px, py, focal)
else:
return [0, 0, 0]
def get_xyz_from_uv(u, v, d, px, py, focal):
if focal != 0:
x = (u - px) / focal * d
y = (v - py) / focal * d
else:
x = 0
y = 0
return np.array([x, y, d]).transpose()
def get_uv_from_xyz(x, y, z, px, py, focal):
if z != 0:
u = focal * x / z + px
v = focal * y / z + py
else:
u = 0
v = 0
return u, v
|