1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
# examples/python/reconstruction_system/refine_registration.py
import numpy as np
import open3d as o3d
import os, sys
pyexample_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(pyexample_path)
from open3d_example import join, get_file_list, write_poses_to_log, draw_registration_result_original_color
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from optimize_posegraph import optimize_posegraph_for_refined_scene
def update_posegraph_for_scene(s, t, transformation, information, odometry,
pose_graph):
if t == s + 1: # odometry case
odometry = np.dot(transformation, odometry)
odometry_inv = np.linalg.inv(odometry)
pose_graph.nodes.append(
o3d.pipelines.registration.PoseGraphNode(odometry_inv))
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(s,
t,
transformation,
information,
uncertain=False))
else: # loop closure case
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(s,
t,
transformation,
information,
uncertain=True))
return (odometry, pose_graph)
def multiscale_icp(source,
target,
voxel_size,
max_iter,
config,
init_transformation=np.identity(4)):
current_transformation = init_transformation
for i, scale in enumerate(range(len(max_iter))): # multi-scale approach
iter = max_iter[scale]
distance_threshold = config["voxel_size"] * 1.4
print("voxel_size {}".format(voxel_size[scale]))
source_down = source.voxel_down_sample(voxel_size[scale])
target_down = target.voxel_down_sample(voxel_size[scale])
if config["icp_method"] == "point_to_point":
result_icp = o3d.pipelines.registration.registration_icp(
source_down, target_down, distance_threshold,
current_transformation,
o3d.pipelines.registration.TransformationEstimationPointToPoint(
),
o3d.pipelines.registration.ICPConvergenceCriteria(
max_iteration=iter))
else:
source_down.estimate_normals(
o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
2.0,
max_nn=30))
target_down.estimate_normals(
o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size[scale] *
2.0,
max_nn=30))
if config["icp_method"] == "point_to_plane":
result_icp = o3d.pipelines.registration.registration_icp(
source_down, target_down, distance_threshold,
current_transformation,
o3d.pipelines.registration.
TransformationEstimationPointToPlane(),
o3d.pipelines.registration.ICPConvergenceCriteria(
max_iteration=iter))
if config["icp_method"] == "color":
# Colored ICP is sensitive to threshold.
# Fallback to preset distance threshold that works better.
# TODO: make it adjustable in the upgraded system.
result_icp = o3d.pipelines.registration.registration_colored_icp(
source_down, target_down, voxel_size[scale],
current_transformation,
o3d.pipelines.registration.
TransformationEstimationForColoredICP(),
o3d.pipelines.registration.ICPConvergenceCriteria(
relative_fitness=1e-6,
relative_rmse=1e-6,
max_iteration=iter))
if config["icp_method"] == "generalized":
result_icp = o3d.pipelines.registration.registration_generalized_icp(
source_down, target_down, distance_threshold,
current_transformation,
o3d.pipelines.registration.
TransformationEstimationForGeneralizedICP(),
o3d.pipelines.registration.ICPConvergenceCriteria(
relative_fitness=1e-6,
relative_rmse=1e-6,
max_iteration=iter))
current_transformation = result_icp.transformation
if i == len(max_iter) - 1:
information_matrix = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
source_down, target_down, voxel_size[scale] * 1.4,
result_icp.transformation)
if config["debug_mode"]:
draw_registration_result_original_color(source, target,
result_icp.transformation)
return (result_icp.transformation, information_matrix)
def local_refinement(source, target, transformation_init, config):
voxel_size = config["voxel_size"]
(transformation, information) = \
multiscale_icp(
source, target,
[voxel_size, voxel_size/2.0, voxel_size/4.0], [50, 30, 14],
config, transformation_init)
return (transformation, information)
def register_point_cloud_pair(ply_file_names, s, t, transformation_init,
config):
print("reading %s ..." % ply_file_names[s])
source = o3d.io.read_point_cloud(ply_file_names[s])
print("reading %s ..." % ply_file_names[t])
target = o3d.io.read_point_cloud(ply_file_names[t])
(transformation, information) = \
local_refinement(source, target, transformation_init, config)
if config["debug_mode"]:
print(transformation)
print(information)
return (transformation, information)
# other types instead of class?
class matching_result:
def __init__(self, s, t, trans):
self.s = s
self.t = t
self.success = False
self.transformation = trans
self.infomation = np.identity(6)
def make_posegraph_for_refined_scene(ply_file_names, config):
pose_graph = o3d.io.read_pose_graph(
join(config["path_dataset"],
config["template_global_posegraph_optimized"]))
n_files = len(ply_file_names)
matching_results = {}
for edge in pose_graph.edges:
s = edge.source_node_id
t = edge.target_node_id
matching_results[s * n_files + t] = \
matching_result(s, t, edge.transformation)
if config["python_multi_threading"] == True:
from joblib import Parallel, delayed
import multiprocessing
import subprocess
MAX_THREAD = min(multiprocessing.cpu_count(),
max(len(pose_graph.edges), 1))
results = Parallel(n_jobs=MAX_THREAD)(
delayed(register_point_cloud_pair)(
ply_file_names, matching_results[r].s, matching_results[r].t,
matching_results[r].transformation, config)
for r in matching_results)
for i, r in enumerate(matching_results):
matching_results[r].transformation = results[i][0]
matching_results[r].information = results[i][1]
else:
for r in matching_results:
(matching_results[r].transformation,
matching_results[r].information) = \
register_point_cloud_pair(ply_file_names,
matching_results[r].s, matching_results[r].t,
matching_results[r].transformation, config)
pose_graph_new = o3d.pipelines.registration.PoseGraph()
odometry = np.identity(4)
pose_graph_new.nodes.append(
o3d.pipelines.registration.PoseGraphNode(odometry))
for r in matching_results:
(odometry, pose_graph_new) = update_posegraph_for_scene(
matching_results[r].s, matching_results[r].t,
matching_results[r].transformation, matching_results[r].information,
odometry, pose_graph_new)
print(pose_graph_new)
o3d.io.write_pose_graph(
join(config["path_dataset"], config["template_refined_posegraph"]),
pose_graph_new)
def run(config):
print("refine rough registration of fragments.")
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
ply_file_names = get_file_list(
join(config["path_dataset"], config["folder_fragment"]), ".ply")
make_posegraph_for_refined_scene(ply_file_names, config)
optimize_posegraph_for_refined_scene(config["path_dataset"], config)
path_dataset = config['path_dataset']
n_fragments = len(ply_file_names)
# Save to trajectory
poses = []
pose_graph_fragment = o3d.io.read_pose_graph(
join(path_dataset, config["template_refined_posegraph_optimized"]))
for fragment_id in range(len(pose_graph_fragment.nodes)):
pose_graph_rgbd = o3d.io.read_pose_graph(
join(path_dataset,
config["template_fragment_posegraph_optimized"] % fragment_id))
for frame_id in range(len(pose_graph_rgbd.nodes)):
frame_id_abs = fragment_id * \
config['n_frames_per_fragment'] + frame_id
pose = np.dot(pose_graph_fragment.nodes[fragment_id].pose,
pose_graph_rgbd.nodes[frame_id].pose)
poses.append(pose)
traj_name = join(path_dataset, config["template_global_traj"])
write_poses_to_log(traj_name, poses)
|