File: test_nns.py

package info (click to toggle)
open3d 0.16.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 80,688 kB
  • sloc: cpp: 193,088; python: 24,973; ansic: 8,356; javascript: 1,869; sh: 1,473; makefile: 236; xml: 69
file content (163 lines) | stat: -rw-r--r-- 6,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------

import itertools
import operator
import os
import sys

import numpy as np
import open3d as o3d
import open3d.core as o3c
import pytest

sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..")
sys.path.append(
    os.path.dirname(os.path.realpath(__file__)) +
    "/../../../examples/python/utility")
from open3d_benchmark import list_devices, list_float_dtypes, to_numpy_dtype


class NNSOps:

    @staticmethod
    def knn_setup(datasets, nns_opt):
        index = o3c.nns.NearestNeighborSearch(datasets)
        index.knn_index()
        return index

    @staticmethod
    def radius_setup(datasets, nns_opt):
        radius = nns_opt["radius"]
        index = o3c.nns.NearestNeighborSearch(datasets)
        index.fixed_radius_index(radius)
        return index

    @staticmethod
    def hybrid_setup(datasets, nns_opt):
        radius = nns_opt["radius"]
        index = o3c.nns.NearestNeighborSearch(datasets)
        index.hybrid_index(radius)
        return index

    @staticmethod
    def knn_search(index, queries, nns_opt):
        knn = nns_opt["knn"]
        result = index.knn_search(queries, knn)
        return result

    @staticmethod
    def radius_search(index, queries, nns_opt):
        radius = nns_opt["radius"]
        result = index.fixed_radius_search(queries, radius)
        return result

    @staticmethod
    def hybrid_search(index, queries, nns_opt):
        radius, knn = nns_opt["radius"], nns_opt["knn"]
        result = index.hybrid_search(queries, radius, knn)
        return result


def list_sizes():
    num_points = (10000,)
    return num_points


def list_dimensions():
    dimensions = (3, 8, 16, 32)
    return dimensions


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dim", list_dimensions())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_knn_setup(benchmark, size, dim, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, dim), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    benchmark(NNSOps.knn_setup, a, nns_opt)


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dim", list_dimensions())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_knn_search(benchmark, size, dim, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, dim), dtype=to_numpy_dtype(dtype))
    np_b = np.array(np.random.rand(size, dim), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    b = o3c.Tensor(np_b, dtype=dtype, device=device)
    index = NNSOps.knn_setup(a, nns_opt)
    benchmark(NNSOps.knn_search, index, b, nns_opt)


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_radius_setup(benchmark, size, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    benchmark(NNSOps.radius_setup, a, nns_opt)


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_radius_search(benchmark, size, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    np_b = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    b = o3c.Tensor(np_b, dtype=dtype, device=device)
    index = NNSOps.radius_setup(a, nns_opt)
    benchmark(NNSOps.radius_search, index, b, nns_opt)


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_hybrid_setup(benchmark, size, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    benchmark(NNSOps.hybrid_setup, a, nns_opt)


@pytest.mark.parametrize("size", list_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("device", list_devices())
def test_hybrid_search(benchmark, size, dtype, device):
    nns_opt = dict(knn=1, radius=0.01)
    np_a = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    np_b = np.array(np.random.rand(size, 3), dtype=to_numpy_dtype(dtype))
    a = o3c.Tensor(np_a, dtype=dtype, device=device)
    b = o3c.Tensor(np_b, dtype=dtype, device=device)
    index = NNSOps.hybrid_setup(a, nns_opt)
    benchmark(NNSOps.hybrid_search, index, b, nns_opt)