1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
import open3d as o3d
import open3d.core as o3c
import numpy as np
import pytest
import operator
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/..")
from open3d_benchmark import list_tensor_sizes, list_non_bool_dtypes, list_float_dtypes, to_numpy_dtype
class UnaryEWOps:
@staticmethod
def sqrt(a):
return a.sqrt()
@staticmethod
def sin(a):
return a.sin()
@staticmethod
def cos(a):
return a.cos()
@staticmethod
def neg(a):
return a.neg()
@staticmethod
def exp(a):
return a.exp()
@staticmethod
def abs(a):
return a.abs()
@staticmethod
def isnan(a):
return a.isnan()
@staticmethod
def isinf(a):
return a.isinf()
@staticmethod
def isfinite(a):
return a.isfinite()
@staticmethod
def floor(a):
return a.floor()
@staticmethod
def ceil(a):
return a.ceil()
@staticmethod
def round(a):
return a.round()
@staticmethod
def trunc(a):
return a.trunc()
@staticmethod
def logical_not(a):
return a.logical_not()
def list_unary_ops():
return [
UnaryEWOps.neg,
UnaryEWOps.abs,
UnaryEWOps.isnan,
UnaryEWOps.isinf,
UnaryEWOps.isfinite,
UnaryEWOps.floor,
UnaryEWOps.ceil,
UnaryEWOps.round,
UnaryEWOps.trunc,
UnaryEWOps.logical_not,
]
def list_float_unary_ops():
return [
UnaryEWOps.sqrt,
UnaryEWOps.sin,
UnaryEWOps.cos,
UnaryEWOps.exp,
]
def to_numpy_unary_op(op):
conversions = {
UnaryEWOps.sqrt: np.sqrt,
UnaryEWOps.sin: np.sin,
UnaryEWOps.cos: np.cos,
UnaryEWOps.neg: operator.neg,
UnaryEWOps.exp: np.exp,
UnaryEWOps.abs: np.abs,
UnaryEWOps.isnan: np.isnan,
UnaryEWOps.isinf: np.isinf,
UnaryEWOps.isfinite: np.isfinite,
UnaryEWOps.floor: np.floor,
UnaryEWOps.ceil: np.ceil,
UnaryEWOps.round: np.round,
UnaryEWOps.trunc: np.trunc,
UnaryEWOps.logical_not: np.logical_not,
}
return conversions[op]
@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_non_bool_dtypes())
@pytest.mark.parametrize("op", list_unary_ops())
def test_unary_ew_ops(benchmark, size, dtype, op):
# Set upper bound to 88 to avoid overflow for exp() op.
np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
a = o3c.Tensor(np_a, dtype=dtype, device=o3c.Device("CPU:0"))
benchmark(op, a)
@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("op", list_float_unary_ops())
def test_float_unary_ew_ops(benchmark, size, dtype, op):
# Set upper bound to 88 to avoid overflow for exp() op.
np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
a = o3c.Tensor(np_a, dtype=dtype, device=o3c.Device("CPU:0"))
benchmark(op, a)
@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_non_bool_dtypes())
@pytest.mark.parametrize("op", list_unary_ops())
def test_unary_ew_ops_numpy(benchmark, size, dtype, op):
# Set upper bound to 88 to avoid overflow for exp() op.
np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
benchmark(to_numpy_unary_op(op), np_a)
@pytest.mark.parametrize("size", list_tensor_sizes())
@pytest.mark.parametrize("dtype", list_float_dtypes())
@pytest.mark.parametrize("op", list_float_unary_ops())
def test_float_unary_ew_ops_numpy(benchmark, size, dtype, op):
# Set upper bound to 88 to avoid overflow for exp() op.
np_a = np.array(np.random.uniform(1, 88, size), dtype=to_numpy_dtype(dtype))
benchmark(to_numpy_unary_op(op), np_a)
|