1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
import numpy as np
import open3d as o3d
import pytest
from collections import namedtuple
import importlib
from types import SimpleNamespace
import urllib.request
import io
# skip all tests if the ml ops were not built
default_marks = [
pytest.mark.skipif(not (o3d._build_config['BUILD_TENSORFLOW_OPS'] or
o3d._build_config['BUILD_PYTORCH_OPS']),
reason='ml ops not built'),
]
MLModules = namedtuple('MLModules', [
'module', 'ops', 'layers', 'classes', 'device', 'cpu_device',
'device_is_gpu'
])
# define the list of frameworks and devices for running the ops
_ml_modules = {}
try:
# Suppress deprecated imp module warnings caused by tensorflow,
# see https://github.com/tensorflow/tensorflow/issues/31412
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
tf = importlib.import_module('tensorflow')
ml3d_ops = importlib.import_module('open3d.ml.tf.ops')
ml3d_layers = importlib.import_module('open3d.ml.tf.layers')
_ml_modules['tf'] = MLModules(tf, ml3d_ops, ml3d_layers, None, 'CPU:0',
'CPU:0', False)
# check for GPUs and set memory growth to prevent tf from allocating all memory
tf_gpu_devices = tf.config.experimental.list_physical_devices('GPU')
for dev in tf_gpu_devices:
tf.config.experimental.set_memory_growth(dev, True)
if tf_gpu_devices and o3d._build_config['BUILD_CUDA_MODULE']:
_ml_modules['tf_gpu'] = MLModules(tf, ml3d_ops, ml3d_layers, None,
'GPU:0', 'CPU:0', True)
except ImportError:
pass
try:
torch = importlib.import_module('torch')
ml3d_ops = importlib.import_module('open3d.ml.torch.ops')
ml3d_layers = importlib.import_module('open3d.ml.torch.layers')
ml3d_classes = importlib.import_module('open3d.ml.torch.classes')
_ml_modules['torch'] = MLModules(torch, ml3d_ops, ml3d_layers, ml3d_classes,
'cpu', 'cpu', False)
if torch.cuda.is_available() and o3d._build_config['BUILD_CUDA_MODULE']:
_ml_modules['torch_cuda'] = MLModules(torch, ml3d_ops, ml3d_layers,
ml3d_classes, 'cuda', 'cpu', True)
except ImportError:
pass
def is_gpu_device_name(name):
return name in ('GPU:0', 'cuda')
def to_numpy(tensor):
if 'torch' in _ml_modules and isinstance(tensor, torch.Tensor):
if tensor.requires_grad:
tensor = tensor.detach()
if tensor.device.type == 'cuda':
tensor = tensor.cpu()
return tensor.numpy()
else:
return tensor.numpy()
def to_torch(x, device):
"""Converts x such that it can be used as input to a pytorch op."""
if isinstance(x, np.ndarray):
return torch.from_numpy(x).contiguous().to(device)
else:
return x
def run_op(ml, device_name, check_device, fn, *args, **kwargs):
"""Runs an op using an ml framework"""
if ml.module.__name__ == 'tensorflow':
with tf.device(device_name):
ans = fn(*args, **kwargs)
if check_device:
# not all returned tensors have to use the device.
# check if there is at least one tensor using device memory
tensor_on_device = False
if isinstance(ans, tf.Tensor):
if device_name in ans.device:
tensor_on_device = True
else:
for x in ans:
if device_name in x.device:
tensor_on_device = True
assert tensor_on_device
elif ml.module.__name__ == 'torch':
_args = [to_torch(x, device_name) for x in args]
_kwargs = {k: to_torch(v, device_name) for k, v in kwargs.items()}
ans = fn(*_args, **_kwargs)
if check_device:
# not all returned tensor have to use the device.
# check if there is at least one tensor using device memory
tensor_on_device = False
if isinstance(ans, torch.Tensor):
if device_name == ans.device.type:
tensor_on_device = True
else:
for x in ans:
if isinstance(
x, torch.Tensor) and device_name == x.device.type:
tensor_on_device = True
assert tensor_on_device
else:
raise ValueError('unsupported ml framework {}'.format(ml.module))
# convert outputs to numpy.
if hasattr(ans, 'numpy'):
new_ans = to_numpy(ans)
else:
# we assume the output is a (named)tuple if there is no numpy() function
return_type = type(ans)
output_as_numpy = [to_numpy(x) for x in ans]
new_ans = return_type(*output_as_numpy)
return new_ans
def run_op_grad(ml, device_name, check_device, fn, x, y_attr_name,
backprop_values, *args, **kwargs):
"""Computes the gradient for input x of an op using an ml framework"""
if ml.module.__name__ == 'tensorflow':
x_var = tf.constant(x)
_args = [x_var if a is x else a for a in args]
_kwargs = {k: x_var if a is x else a for k, a in kwargs.items()}
with tf.device(device_name):
with tf.GradientTape() as tape:
tape.watch(x_var)
ans = fn(*_args, **_kwargs)
if y_attr_name:
y = getattr(ans, y_attr_name)
else:
y = ans
dy_dx = tape.gradient(y, x_var, backprop_values)
if check_device:
# check if the gradient is using device memory
tensor_on_device = False
if device_name in dy_dx.device:
tensor_on_device = True
assert tensor_on_device
elif ml.module.__name__ == 'torch':
x_var = to_torch(x, device_name)
x_var.requires_grad = True
_args = [x_var if a is x else to_torch(a, device_name) for a in args]
_kwargs = {
k: x_var if a is x else to_torch(a, device_name)
for k, a in kwargs.items()
}
ans = fn(*_args, **_kwargs)
if y_attr_name:
y = getattr(ans, y_attr_name)
else:
y = ans
y.backward(to_torch(backprop_values, device_name))
dy_dx = x_var.grad
if check_device:
# check if the gradient is using device memory
tensor_on_device = False
if isinstance(dy_dx,
torch.Tensor) and device_name == dy_dx.device.type:
tensor_on_device = True
assert tensor_on_device
else:
raise ValueError('unsupported ml framework {}'.format(ml.module))
return to_numpy(dy_dx)
class MLTensor:
"""Class for dealing with ml framework specific tensors and rng.
Args:
module: Either the tensorflow or torch module
"""
def __init__(self, module):
self.module = module
def get_dtype(self, dtype_str):
return getattr(self.module, dtype_str)
def set_seed(self, seed):
if self.module.__name__ == 'tensorflow':
self.module.random.set_seed(seed)
elif self.module.__name__ == 'torch':
self.module.manual_seed(seed)
else:
raise Exception('Unsupported ml framework')
def set_deterministic(self, deterministic):
if self.module.__name__ == 'tensorflow':
pass
elif self.module.__name__ == 'torch':
self.module.set_deterministic(deterministic)
else:
raise Exception('Unsupported ml framework')
def random_uniform(self, size, dtype, minval=0, maxval=1):
if isinstance(dtype, str):
dtype = self.get_dtype(dtype)
if self.module.__name__ == 'tensorflow':
return self.module.random.uniform(shape=size,
dtype=dtype,
minval=minval,
maxval=maxval)
elif self.module.__name__ == 'torch':
ans = self.module.empty(size=size, dtype=dtype)
return ans.uniform_(minval, maxval)
else:
raise Exception('Unsupported ml framework')
def empty(self, shape, dtype):
if isinstance(dtype, str):
dtype = self.get_dtype(dtype)
if self.module.__name__ == 'tensorflow':
return self.module.zeros(shape=shape, dtype=dtype)
elif self.module.__name__ == 'torch':
return self.module.empty(size=shape, dtype=dtype)
else:
raise Exception('Unsupported ml framework')
def zeros(self, shape, dtype):
if isinstance(dtype, str):
dtype = self.get_dtype(dtype)
if self.module.__name__ == 'tensorflow':
return self.module.zeros(shape=shape, dtype=dtype)
elif self.module.__name__ == 'torch':
return self.module.zeros(size=shape, dtype=dtype)
else:
raise Exception('Unsupported ml framework')
# add parameterizations for the ml module and the device
parametrize = SimpleNamespace(
ml=pytest.mark.parametrize('ml', _ml_modules.values()),
ml_cpu_only=pytest.mark.parametrize(
'ml', [v for k, v in _ml_modules.items() if not v.device_is_gpu]),
ml_gpu_only=pytest.mark.parametrize(
'ml', [v for k, v in _ml_modules.items() if v.device_is_gpu]),
ml_torch_only=pytest.mark.parametrize(
'ml',
[v for k, v in _ml_modules.items() if v.module.__name__ == 'torch']),
ml_tf_only=pytest.mark.parametrize('ml', [
v for k, v in _ml_modules.items() if v.module.__name__ == 'tensorflow'
]),
)
def fetch_numpy(url):
# prevents security issue
if url.lower().startswith('http'):
req = urllib.request.Request(url)
else:
raise ValueError from None
with urllib.request.urlopen(req) as response: #nosec
np_file = response.read()
return np.load(io.BytesIO(np_file))
return None
|