1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
# ----------------------------------------------------------------------------
# - Open3D: www.open3d.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2018-2021 www.open3d.org
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# ----------------------------------------------------------------------------
import tensorflow as tf
import open3d.ml.tf as ml3d
import numpy as np
class MyParticleNetwork(tf.keras.Model):
def __init__(
self,
kernel_size=[4, 4, 4],
radius_scale=1.5,
coordinate_mapping='ball_to_cube_volume_preserving',
interpolation='linear',
use_window=True,
particle_radius=0.025,
timestep=1 / 50,
):
super().__init__(name=type(self).__name__)
self.layer_channels = [32, 64, 64, 3]
self.kernel_size = kernel_size
self.radius_scale = radius_scale
self.coordinate_mapping = coordinate_mapping
self.interpolation = interpolation
self.use_window = use_window
self.particle_radius = particle_radius
self.filter_extent = np.float32(self.radius_scale * 6 *
self.particle_radius)
self.timestep = timestep
self._all_convs = []
def window_poly6(r_sqr):
return tf.clip_by_value((1 - r_sqr)**3, 0, 1)
def Conv(name, activation=None, **kwargs):
conv_fn = ml3d.layers.ContinuousConv
window_fn = None
if self.use_window == True:
window_fn = window_poly6
conv = conv_fn(name=name,
kernel_size=self.kernel_size,
activation=activation,
align_corners=True,
interpolation=self.interpolation,
coordinate_mapping=self.coordinate_mapping,
normalize=False,
window_function=window_fn,
radius_search_ignore_query_points=True,
**kwargs)
self._all_convs.append((name, conv))
return conv
self.conv0_fluid = Conv(name="conv0_fluid",
filters=self.layer_channels[0],
activation=None)
self.conv0_obstacle = Conv(name="conv0_obstacle",
filters=self.layer_channels[0],
activation=None)
self.dense0_fluid = tf.keras.layers.Dense(name="dense0_fluid",
units=self.layer_channels[0],
activation=None)
self.convs = []
self.denses = []
for i in range(1, len(self.layer_channels)):
ch = self.layer_channels[i]
dense = tf.keras.layers.Dense(units=ch,
name="dense{0}".format(i),
activation=None)
conv = Conv(name='conv{0}'.format(i), filters=ch, activation=None)
self.denses.append(dense)
self.convs.append(conv)
def integrate_pos_vel(self, pos1, vel1):
"""Apply gravity and integrate position and velocity"""
dt = self.timestep
vel2 = vel1 + dt * tf.constant([0, -9.81, 0])
pos2 = pos1 + dt * (vel2 + vel1) / 2
return pos2, vel2
def compute_new_pos_vel(self, pos1, vel1, pos2, vel2, pos_correction):
"""Apply the correction
pos1,vel1 are the positions and velocities from the previous timestep
pos2,vel2 are the positions after applying gravity and the integration step
"""
dt = self.timestep
pos = pos2 + pos_correction
vel = (pos - pos1) / dt
return pos, vel
def compute_correction(self,
pos,
vel,
other_feats,
box,
box_feats,
fixed_radius_search_hash_table=None):
"""Expects that the pos and vel has already been updated with gravity and velocity"""
# compute the extent of the filters (the diameter)
filter_extent = tf.constant(self.filter_extent)
fluid_feats = [tf.ones_like(pos[:, 0:1]), vel]
if not other_feats is None:
fluid_feats.append(other_feats)
fluid_feats = tf.concat(fluid_feats, axis=-1)
self.ans_conv0_fluid = self.conv0_fluid(fluid_feats, pos, pos,
filter_extent)
self.ans_dense0_fluid = self.dense0_fluid(fluid_feats)
self.ans_conv0_obstacle = self.conv0_obstacle(box_feats, box, pos,
filter_extent)
feats = tf.concat([
self.ans_conv0_obstacle, self.ans_conv0_fluid, self.ans_dense0_fluid
],
axis=-1)
self.ans_convs = [feats]
for conv, dense in zip(self.convs, self.denses):
inp_feats = tf.keras.activations.relu(self.ans_convs[-1])
ans_conv = conv(inp_feats, pos, pos, filter_extent)
ans_dense = dense(inp_feats)
if ans_dense.shape[-1] == self.ans_convs[-1].shape[-1]:
ans = ans_conv + ans_dense + self.ans_convs[-1]
else:
ans = ans_conv + ans_dense
self.ans_convs.append(ans)
# compute the number of fluid neighbors.
# this info is used in the loss function during training.
self.num_fluid_neighbors = ml3d.ops.reduce_subarrays_sum(
tf.ones_like(self.conv0_fluid.nns.neighbors_index,
dtype=tf.float32),
self.conv0_fluid.nns.neighbors_row_splits)
self.last_features = self.ans_convs[-2]
# scale to better match the scale of the output distribution
self.pos_correction = (1.0 / 128) * self.ans_convs[-1]
return self.pos_correction
def call(self, inputs, fixed_radius_search_hash_table=None):
"""computes 1 simulation timestep
inputs: list or tuple with (pos,vel,feats,box,box_feats)
pos and vel are the positions and velocities of the fluid particles.
feats is reserved for passing additional features, use None here.
box are the positions of the static particles and box_feats are the
normals of the static particles.
"""
pos, vel, feats, box, box_feats = inputs
pos2, vel2 = self.integrate_pos_vel(pos, vel)
pos_correction = self.compute_correction(
pos2, vel2, feats, box, box_feats, fixed_radius_search_hash_table)
pos2_corrected, vel2_corrected = self.compute_new_pos_vel(
pos, vel, pos2, vel2, pos_correction)
return pos2_corrected, vel2_corrected
def init(self, feats_shape=None):
"""Runs the network with dummy data to initialize the shape of all variables"""
pos = np.zeros(shape=(1, 3), dtype=np.float32)
vel = np.zeros(shape=(1, 3), dtype=np.float32)
if feats_shape is None:
feats = None
else:
feats = np.zeros(shape=feats_shape, dtype=np.float32)
box = np.zeros(shape=(1, 3), dtype=np.float32)
box_feats = np.zeros(shape=(1, 3), dtype=np.float32)
_ = self.__call__((pos, vel, feats, box, box_feats))
|