1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include <benchmark/benchmark.h>
#include <type_traits>
#include "benchmarks/benchmark_utilities/Rand.h"
#include "open3d/core/CUDAUtils.h"
#include "open3d/core/Indexer.h"
#include "open3d/core/ParallelFor.h"
#include "open3d/core/Tensor.h"
#include "open3d/utility/Logging.h"
namespace open3d {
namespace core {
enum class BinaryOpCode {
Add,
Sub,
Mul,
Div,
LogicalAnd,
LogicalOr,
LogicalXor,
Gt,
Ge,
Lt,
Le,
Eq,
Neq,
};
static std::function<Tensor(const Tensor&, const Tensor&)> MakeOperation(
BinaryOpCode op) {
switch (op) {
case BinaryOpCode::Add:
return std::plus<Tensor>();
case BinaryOpCode::Sub:
return std::minus<Tensor>();
case BinaryOpCode::Mul:
return std::multiplies<Tensor>();
case BinaryOpCode::Div:
return std::divides<Tensor>();
case BinaryOpCode::LogicalAnd:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs && rhs;
};
case BinaryOpCode::LogicalOr:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs || rhs;
};
case BinaryOpCode::LogicalXor:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs.LogicalXor(rhs);
};
case BinaryOpCode::Gt:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs > rhs;
};
case BinaryOpCode::Ge:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs >= rhs;
};
case BinaryOpCode::Lt:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs < rhs;
};
case BinaryOpCode::Le:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs <= rhs;
};
case BinaryOpCode::Eq:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs == rhs;
};
case BinaryOpCode::Neq:
return [](const Tensor& lhs, const Tensor& rhs) -> Tensor {
return lhs != rhs;
};
default:
utility::LogError("Unknown operation {}", static_cast<int>(op));
}
}
void BinaryEW(benchmark::State& state,
int size,
BinaryOpCode op_code,
const Dtype& dtype,
const Device& device) {
Tensor lhs = benchmarks::Rand({1, size}, 1, {1, 127}, dtype, device);
Tensor rhs = benchmarks::Rand({1, size}, 2, {1, 127}, dtype, device);
auto op = MakeOperation(op_code);
Tensor result = op(lhs, rhs);
benchmark::DoNotOptimize(result);
for (auto _ : state) {
Tensor result = op(lhs, rhs);
benchmark::DoNotOptimize(result);
cuda::Synchronize(device);
}
}
#define ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, DTYPE) \
BENCHMARK_CAPTURE(FN, OP##__##DEVICE_NAME##_##DTYPE##__100, 100, \
BinaryOpCode::OP, DTYPE, DEVICE) \
->Unit(benchmark::kMillisecond); \
BENCHMARK_CAPTURE(FN, OP##__##DEVICE_NAME##_##DTYPE##__100000, 100000, \
BinaryOpCode::OP, DTYPE, DEVICE) \
->Unit(benchmark::kMillisecond); \
BENCHMARK_CAPTURE(FN, OP##__##DEVICE_NAME##_##DTYPE##__100000000, \
100000000, BinaryOpCode::OP, DTYPE, DEVICE) \
->Unit(benchmark::kMillisecond);
#define ENUM_BM_DTYPE(FN, OP, DEVICE, DEVICE_NAME) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int8) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt8) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int16) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt16) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int64) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt64) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Float32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Float64)
#define ENUM_BM_DTYPE_WITH_BOOL(FN, OP, DEVICE, DEVICE_NAME) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Bool) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int8) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt8) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int16) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt16) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Int64) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, UInt64) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Float32) \
ENUM_BM_SIZE(FN, OP, DEVICE, DEVICE_NAME, Float64)
// #ifdef BUILD_CUDA_MODULE
// #define ENUM_BM_TENSOR(FN, OP)
// ENUM_BM_DTYPE(FN, OP, Device("CPU:0"), CPU)
// ENUM_BM_DTYPE(FN, OP, Device("CUDA:0"), CUDA)
// #else
#define ENUM_BM_TENSOR(FN, OP) ENUM_BM_DTYPE(FN, OP, Device("CPU:0"), CPU)
// #endif
// #ifdef BUILD_CUDA_MODULE
// #define ENUM_BM_TENSOR_WTIH_BOOL(FN, OP)
// ENUM_BM_DTYPE_WITH_BOOL(FN, OP, Device("CPU:0"), CPU)
// ENUM_BM_DTYPE_WITH_BOOL(FN, OP, Device("CUDA:0"), CUDA)
// #else
#define ENUM_BM_TENSOR_WTIH_BOOL(FN, OP) \
ENUM_BM_DTYPE_WITH_BOOL(FN, OP, Device("CPU:0"), CPU)
// #endif
ENUM_BM_TENSOR(BinaryEW, Add)
ENUM_BM_TENSOR(BinaryEW, Sub)
ENUM_BM_TENSOR(BinaryEW, Mul)
ENUM_BM_TENSOR(BinaryEW, Div)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, LogicalAnd)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, LogicalOr)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, LogicalXor)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Gt)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Ge)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Lt)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Le)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Eq)
ENUM_BM_TENSOR_WTIH_BOOL(BinaryEW, Neq)
} // namespace core
} // namespace open3d
|