1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/io/PointCloudIO.h"
#include <benchmark/benchmark.h>
#include "open3d/utility/Logging.h"
namespace open3d {
namespace benchmarks {
using open3d::io::ReadPointCloud;
using open3d::io::WritePointCloud;
namespace {
template <class T>
double AverageDistance(const std::vector<T> &a, const std::vector<T> &b) {
if (a.size() != b.size()) {
utility::LogError("vectors different size {} {}", a.size(), b.size());
}
if (a.size() == 0) {
return 0.;
}
double total = 0;
for (size_t i = 0; i < a.size(); ++i) {
total += (a[i] - b[i]).norm();
}
return total / a.size();
}
enum class IsAscii : bool { BINARY = false, ASCII = true };
enum class Compressed : bool { UNCOMPRESSED = false, COMPRESSED = true };
enum class Compare : uint32_t {
// Points are always compared
NONE = 0,
NORMALS = 1 << 0,
COLORS = 1 << 1,
NORMALS_AND_COLORS = NORMALS | COLORS
};
struct ReadWritePCArgs {
std::string filename;
IsAscii write_ascii;
Compressed compressed;
Compare compare;
};
std::vector<ReadWritePCArgs> g_pc_args({
// PCD has ASCII, BINARY, and BINARY_COMPRESSED
{"testau.pcd", IsAscii::ASCII, Compressed::UNCOMPRESSED,
Compare::NORMALS_AND_COLORS}, // 0
{"testbu.pcd", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::NORMALS_AND_COLORS}, // 1
{"testbc.pcd", IsAscii::BINARY, Compressed::COMPRESSED,
Compare::NORMALS_AND_COLORS}, // 2
{"testb.ply", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::NORMALS_AND_COLORS}, // 3
{"testa.ply", IsAscii::ASCII, Compressed::UNCOMPRESSED,
Compare::NORMALS_AND_COLORS}, // 4
{"test.pts", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::COLORS}, // 5
{"test.xyz", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::NONE}, // 6
{"test.xyzn", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::NORMALS}, // 7
{"test.xyzrgb", IsAscii::BINARY, Compressed::UNCOMPRESSED,
Compare::COLORS}, // 8
});
class TestPCGrid0 {
geometry::PointCloud pc_;
int size_ = 0;
const bool print_progress = false;
public:
void Setup(int size) {
if (size_ == size) return;
utility::LogInfo("setup PCGrid size={}", size);
pc_.Clear();
size_ = size;
for (int i = 0; i < size; ++i) {
// provide somewhat random numbers everywhere, so compression
// doesn't get a free pass
pc_.points_.push_back({std::sin(i * .8969920581) * 1000.,
std::sin(i * .3898546778) * 1000.,
std::sin(i * .2509962463) * 1000.});
pc_.normals_.push_back({std::sin(i * .4472367685),
std::sin(i * .9698787116),
std::sin(i * .7072878517)});
// color needs to be [0,1]
pc_.colors_.push_back({std::fmod(i * .4241490710, 1.0),
std::fmod(i * .6468026221, 1.0),
std::fmod(i * .5376722873, 1.0)});
}
}
void WriteRead(int pc_args_id) {
const auto &args = g_pc_args[pc_args_id];
const auto &pc = pc_;
// we loose some precision when saving generated data
if (!WritePointCloud(args.filename, pc,
{bool(args.write_ascii), bool(args.compressed),
print_progress})) {
utility::LogError("Failed to write to {}", args.filename);
}
geometry::PointCloud pc2;
if (!ReadPointCloud(args.filename, pc2,
{"auto", false, false, print_progress})) {
utility::LogError("Failed to read from {}", args.filename);
}
auto CheckLE = [](double a, double b) {
if (a <= b) return;
utility::LogError("Error too high: {} {}", a, b);
};
const double pointsMaxError =
1e-3; //.ply ascii has the highest error, others <1e-4
CheckLE(AverageDistance(pc.points_, pc2.points_), pointsMaxError);
if (int(args.compare) & int(Compare::NORMALS)) {
const double normalsMaxError =
1e-6; //.ply ascii has the highest error, others <1e-7
CheckLE(AverageDistance(pc.normals_, pc2.normals_),
normalsMaxError);
}
if (int(args.compare) & int(Compare::COLORS)) {
const double colorsMaxError =
1e-2; // colors are saved as uint8_t[3] in a lot of formats
CheckLE(AverageDistance(pc.colors_, pc2.colors_), colorsMaxError);
}
}
};
// reuse the same instance so we don't recreate the point cloud every time
TestPCGrid0 test_pc_grid0;
} // namespace
static void BM_TestPCGrid0(::benchmark::State &state) {
// state.range(n) are arguments that are passed to us
int pc_args_id = state.range(0);
int size = state.range(1);
test_pc_grid0.Setup(size);
for (auto _ : state) {
test_pc_grid0.WriteRead(pc_args_id);
}
}
static void BM_TestPCGrid0_Args(benchmark::internal::Benchmark *b) {
for (int j = 4 * 1024; j <= 256 * 1024; j *= 8) {
for (int i = 0; i < int(g_pc_args.size()); ++i) {
b->Args({i, j});
}
}
}
BENCHMARK(BM_TestPCGrid0)->MinTime(0.1)->Apply(BM_TestPCGrid0_Args);
} // namespace benchmarks
} // namespace open3d
|