1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "pybind/core/tensor_converter.h"
#include "open3d/core/Tensor.h"
#include "open3d/utility/Logging.h"
#ifdef _MSC_VER
#pragma warning(disable : 4996) // Use of [[deprecated]] feature
#endif
#include "pybind/core/core.h"
#include "pybind/open3d_pybind.h"
#include "pybind/pybind_utils.h"
namespace open3d {
namespace core {
static Tensor CastOptionalDtypeDevice(const Tensor& t,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
Tensor t_cast = t;
if (dtype.has_value()) {
t_cast = t_cast.To(dtype.value());
}
if (device.has_value()) {
t_cast = t_cast.To(device.value());
}
return t_cast;
}
/// Convert Tensor class to py::array (Numpy array).
py::array TensorToPyArray(const Tensor& tensor) {
if (!tensor.IsCPU()) {
utility::LogError(
"Can only convert CPU Tensor to numpy. Copy Tensor to CPU "
"before converting to numpy.");
}
py::dtype py_dtype =
py::dtype(pybind_utils::DtypeToArrayFormat(tensor.GetDtype()));
py::array::ShapeContainer py_shape(tensor.GetShape());
SizeVector strides = tensor.GetStrides();
int64_t element_byte_size = tensor.GetDtype().ByteSize();
for (auto& s : strides) {
s *= element_byte_size;
}
py::array::StridesContainer py_strides(strides);
// `base_tensor` is a shallow copy of `tensor`. `base_tensor`
// is on the heap and is owned by py::capsule
// `base_tensor_capsule`. The capsule is referenced as the
// "base" of the numpy tensor returned by o3d.Tensor.numpy().
// When the "base" goes out-of-scope (e.g. when all numpy
// tensors referencing the base have gone out-of-scope), the
// deleter is called to free the `base_tensor`.
//
// This behavior is important when the original `tensor` goes
// out-of-scope while we still want to keep the data alive.
// e.g.
//
// ```python
// def get_np_tensor():
// o3d_t = o3d.Tensor(...)
// return o3d_t.numpy()
//
// # Now, `o3d_t` is out-of-scope, but `np_t` still
// # references the base tensor which references the
// # underlying data of `o3d_t`. Thus np_t is still valid.
// # When np_t goes out-of-scope, the underlying data will be
// # finally freed.
// np_t = get_np_tensor()
// ```
//
// See:
// https://stackoverflow.com/questions/44659924/returning-numpy-arrays-via-pybind11
Tensor* base_tensor = new Tensor(tensor);
// See PyTorch's torch/csrc/Module.cpp
auto capsule_destructor = [](PyObject* data) {
Tensor* base_tensor = reinterpret_cast<Tensor*>(
PyCapsule_GetPointer(data, "open3d::Tensor"));
if (base_tensor) {
delete base_tensor;
} else {
PyErr_Clear();
}
};
py::capsule base_tensor_capsule(base_tensor, "open3d::Tensor",
capsule_destructor);
return py::array(py_dtype, py_shape, py_strides, tensor.GetDataPtr(),
base_tensor_capsule);
}
Tensor PyArrayToTensor(py::array array, bool inplace) {
py::buffer_info info = array.request();
SizeVector shape(info.shape.begin(), info.shape.end());
SizeVector strides(info.strides.begin(), info.strides.end());
for (size_t i = 0; i < strides.size(); ++i) {
strides[i] /= info.itemsize;
}
Dtype dtype = pybind_utils::ArrayFormatToDtype(info.format, info.itemsize);
Device device("CPU:0");
auto shared_array = std::make_shared<py::array>(array);
std::function<void(void*)> deleter = [shared_array](void*) mutable -> void {
py::gil_scoped_acquire acquire;
shared_array.reset();
};
auto blob = std::make_shared<Blob>(device, info.ptr, deleter);
Tensor t_inplace(shape, strides, info.ptr, dtype, blob);
if (inplace) {
return t_inplace;
} else {
return t_inplace.Clone();
}
}
Tensor PyListToTensor(const py::list& list,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
py::object numpy = py::module::import("numpy");
py::array np_array = numpy.attr("array")(list);
Tensor t = PyArrayToTensor(np_array, false);
return CastOptionalDtypeDevice(t, dtype, device);
}
Tensor PyTupleToTensor(const py::tuple& tuple,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
py::object numpy = py::module::import("numpy");
py::array np_array = numpy.attr("array")(tuple);
Tensor t = PyArrayToTensor(np_array, false);
return CastOptionalDtypeDevice(t, dtype, device);
}
Tensor DoubleToTensor(double scalar_value,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
Dtype dtype_value = core::Float64;
if (dtype.has_value()) {
dtype_value = dtype.value();
}
Device device_value("CPU:0");
if (device.has_value()) {
device_value = device.value();
}
return Tensor(std::vector<double>{scalar_value}, {}, core::Float64,
device_value)
.To(dtype_value);
}
Tensor IntToTensor(int64_t scalar_value,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
Dtype dtype_value = core::Int64;
if (dtype.has_value()) {
dtype_value = dtype.value();
}
Device device_value("CPU:0");
if (device.has_value()) {
device_value = device.value();
}
return Tensor(std::vector<int64_t>{scalar_value}, {}, core::Int64,
device_value)
.To(dtype_value);
}
Tensor BoolToTensor(bool scalar_value,
utility::optional<Dtype> dtype,
utility::optional<Device> device) {
Dtype dtype_value = core::Bool;
if (dtype.has_value()) {
dtype_value = dtype.value();
}
Device device_value("CPU:0");
if (device.has_value()) {
device_value = device.value();
}
return Tensor(std::vector<bool>{scalar_value}, {}, core::Bool, device_value)
.To(dtype_value);
}
Tensor PyHandleToTensor(const py::handle& handle,
utility::optional<Dtype> dtype,
utility::optional<Device> device,
bool force_copy) {
// 1) bool
// 2) int
// 3) float (double)
// 4) list
// 5) tuple
// 6) numpy.ndarray (value will be copied)
// 7) Tensor (value will be copied)
std::string class_name(py::str(handle.get_type()));
if (class_name == "<class 'bool'>") {
return BoolToTensor(static_cast<bool>(handle.cast<py::bool_>()), dtype,
device);
} else if (class_name == "<class 'int'>") {
return IntToTensor(static_cast<int64_t>(handle.cast<py::int_>()), dtype,
device);
} else if (class_name == "<class 'float'>") {
return DoubleToTensor(static_cast<double>(handle.cast<py::float_>()),
dtype, device);
} else if (class_name == "<class 'list'>") {
return PyListToTensor(handle.cast<py::list>(), dtype, device);
} else if (class_name == "<class 'tuple'>") {
return PyTupleToTensor(handle.cast<py::tuple>(), dtype, device);
} else if (class_name == "<class 'numpy.ndarray'>") {
return CastOptionalDtypeDevice(PyArrayToTensor(handle.cast<py::array>(),
/*inplace=*/!force_copy),
dtype, device);
} else if (class_name.find("open3d") != std::string::npos &&
class_name.find("Tensor") != std::string::npos) {
try {
Tensor* tensor = handle.cast<Tensor*>();
if (force_copy) {
return CastOptionalDtypeDevice(tensor->Clone(), dtype, device);
} else {
return CastOptionalDtypeDevice(*tensor, dtype, device);
}
} catch (...) {
utility::LogError("Cannot cast index to Tensor.");
}
} else {
utility::LogError("PyHandleToTensor has invalid input type {}.",
class_name);
}
}
} // namespace core
} // namespace open3d
|