File: kdtreeflann.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (278 lines) | stat: -rw-r--r-- 14,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "open3d/geometry/KDTreeFlann.h"

#include "pybind/docstring.h"
#include "pybind/geometry/geometry.h"
#include "pybind/geometry/geometry_trampoline.h"

namespace open3d {
namespace geometry {

void pybind_kdtreeflann_declarations(py::module &m) {
    py::class_<KDTreeSearchParam> kdtreesearchparam(
            m, "KDTreeSearchParam", "Base class for KDTree search parameters.");
    // open3d.geometry.KDTreeSearchParam.Type
    py::enum_<KDTreeSearchParam::SearchType> kdtree_search_param_type(
            kdtreesearchparam, "Type", py::arithmetic());
    kdtree_search_param_type
            .value("KNNSearch", KDTreeSearchParam::SearchType::Knn)
            .value("RadiusSearch", KDTreeSearchParam::SearchType::Radius)
            .value("HybridSearch", KDTreeSearchParam::SearchType::Hybrid)
            .export_values();
    kdtree_search_param_type.attr("__doc__") = docstring::static_property(
            py::cpp_function([](py::handle arg) -> std::string {
                return "Enum class for Geometry types.";
            }),
            py::none(), py::none(), "");
    py::class_<KDTreeSearchParamKNN> kdtreesearchparam_knn(
            m, "KDTreeSearchParamKNN", kdtreesearchparam,
            "KDTree search parameters for pure KNN search.");
    py::class_<KDTreeSearchParamRadius> kdtreesearchparam_radius(
            m, "KDTreeSearchParamRadius", kdtreesearchparam,
            "KDTree search parameters for pure radius search.");
    py::class_<KDTreeSearchParamHybrid> kdtreesearchparam_hybrid(
            m, "KDTreeSearchParamHybrid", kdtreesearchparam,
            "KDTree search parameters for hybrid KNN and radius search.");
    py::class_<KDTreeFlann, std::shared_ptr<KDTreeFlann>> kdtreeflann(
            m, "KDTreeFlann", "KDTree with FLANN for nearest neighbor search.");
}

void pybind_kdtreeflann_definitions(py::module &m) {
    // open3d.geometry.KDTreeSearchParam
    auto kdtreesearchparam = static_cast<py::class_<KDTreeSearchParam>>(
            m.attr("KDTreeSearchParam"));
    kdtreesearchparam.def("get_search_type", &KDTreeSearchParam::GetSearchType,
                          "Get the search type (KNN, Radius, Hybrid) for the "
                          "search parameter.");
    docstring::ClassMethodDocInject(m, "KDTreeSearchParam", "get_search_type");

    // open3d.geometry.KDTreeSearchParamKNN
    auto kdtreesearchparam_knn = static_cast<py::class_<KDTreeSearchParamKNN>>(
            m.attr("KDTreeSearchParamKNN"));
    kdtreesearchparam_knn.def(py::init<int>(), "knn"_a = 30)
            .def("__repr__",
                 [](const KDTreeSearchParamKNN &param) {
                     return fmt::format(
                             "KDTreeSearchParamKNN("
                             "knn={})",
                             param.knn_);
                 })
            .def_readwrite("knn", &KDTreeSearchParamKNN::knn_,
                           "Number of the neighbors that will be searched.");

    // open3d.geometry.KDTreeSearchParamRadius
    auto kdtreesearchparam_radius =
            static_cast<py::class_<KDTreeSearchParamRadius>>(
                    m.attr("KDTreeSearchParamRadius"));
    kdtreesearchparam_radius.def(py::init<double>(), "radius"_a)
            .def("__repr__",
                 [](const KDTreeSearchParamRadius &param) {
                     return fmt::format(
                             "KDTreeSearchParamRadius("
                             "radius={})",
                             param.radius_);
                 })
            .def_readwrite("radius", &KDTreeSearchParamRadius::radius_,
                           "Search radius.");

    // open3d.geometry.KDTreeSearchParamHybrid
    auto kdtreesearchparam_hybrid =
            static_cast<py::class_<KDTreeSearchParamHybrid>>(
                    m.attr("KDTreeSearchParamHybrid"));
    kdtreesearchparam_hybrid
            .def(py::init<double, int>(), "radius"_a, "max_nn"_a)
            .def("__repr__",
                 [](const KDTreeSearchParamHybrid &param) {
                     return fmt::format(
                             "KDTreeSearchParamHybrid("
                             "radius={}, "
                             "max_nn={})",
                             param.radius_, param.max_nn_);
                 })
            .def_readwrite("radius", &KDTreeSearchParamHybrid::radius_,
                           "Search radius.")
            .def_readwrite(
                    "max_nn", &KDTreeSearchParamHybrid::max_nn_,
                    "At maximum, ``max_nn`` neighbors will be searched.");

    // open3d.geometry.KDTreeFlann
    auto kdtreeflann =
            static_cast<py::class_<KDTreeFlann>>(m.attr("KDTreeFlann"));
    static const std::unordered_map<std::string, std::string>
            map_kd_tree_flann_method_docs = {
                    {"query", "The input query point."},
                    {"radius", "Search radius."},
                    {"max_nn",
                     "At maximum, ``max_nn`` neighbors will be searched."},
                    {"knn", "``knn`` neighbors will be searched."},
                    {"feature", "Feature data."},
                    {"data", "Matrix data."}};
    kdtreeflann.def(py::init<>())
            .def(py::init<const Eigen::MatrixXd &>(), "data"_a)
            .def("set_matrix_data", &KDTreeFlann::SetMatrixData,
                 "Sets the data for the KDTree from a matrix.", "data"_a)
            .def(py::init<const Geometry &>(), "geometry"_a)
            .def("set_geometry", &KDTreeFlann::SetGeometry,
                 "Sets the data for the KDTree from geometry.", "geometry"_a)
            .def(py::init<const pipelines::registration::Feature &>(),
                 "feature"_a)
            .def("set_feature", &KDTreeFlann::SetFeature,
                 "Sets the data for the KDTree from the feature data.",
                 "feature"_a)
            // Although these C++ style functions are fast by orders of
            // magnitudes when similar queries are performed for a large number
            // of times and memory management is involved, we prefer not to
            // expose them in Python binding. Considering writing C++ functions
            // if performance is an issue.
            //.def("search_vector_3d_in_place",
            //&KDTreeFlann::Search<Eigen::Vector3d>,
            //        "query"_a, "search_param"_a, "indices"_a, "distance2"_a)
            //.def("search_knn_vector_3d_in_place",
            //        &KDTreeFlann::SearchKNN<Eigen::Vector3d>,
            //        "query"_a, "knn"_a, "indices"_a, "distance2"_a)
            //.def("search_radius_vector_3d_in_place",
            //        &KDTreeFlann::SearchRadius<Eigen::Vector3d>, "query"_a,
            //        "radius"_a, "indices"_a, "distance2"_a)
            //.def("search_hybrid_vector_3d_in_place",
            //        &KDTreeFlann::SearchHybrid<Eigen::Vector3d>, "query"_a,
            //        "radius"_a, "max_nn"_a, "indices"_a, "distance2"_a)
            .def(
                    "search_vector_3d",
                    [](const KDTreeFlann &tree, const Eigen::Vector3d &query,
                       const KDTreeSearchParam &param) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.Search(query, param, indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_vector_3d() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "search_param"_a)
            .def(
                    "search_knn_vector_3d",
                    [](const KDTreeFlann &tree, const Eigen::Vector3d &query,
                       int knn) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchKNN(query, knn, indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_knn_vector_3d() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "knn"_a)
            .def(
                    "search_radius_vector_3d",
                    [](const KDTreeFlann &tree, const Eigen::Vector3d &query,
                       double radius) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchRadius(query, radius, indices,
                                                  distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_radius_vector_3d() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "radius"_a)
            .def(
                    "search_hybrid_vector_3d",
                    [](const KDTreeFlann &tree, const Eigen::Vector3d &query,
                       double radius, int max_nn) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchHybrid(query, radius, max_nn,
                                                  indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_hybrid_vector_3d() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "radius"_a, "max_nn"_a)
            .def(
                    "search_vector_xd",
                    [](const KDTreeFlann &tree, const Eigen::VectorXd &query,
                       const KDTreeSearchParam &param) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.Search(query, param, indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_vector_xd() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "search_param"_a)
            .def(
                    "search_knn_vector_xd",
                    [](const KDTreeFlann &tree, const Eigen::VectorXd &query,
                       int knn) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchKNN(query, knn, indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_knn_vector_xd() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "knn"_a)
            .def(
                    "search_radius_vector_xd",
                    [](const KDTreeFlann &tree, const Eigen::VectorXd &query,
                       double radius) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchRadius(query, radius, indices,
                                                  distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_radius_vector_xd() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "radius"_a)
            .def(
                    "search_hybrid_vector_xd",
                    [](const KDTreeFlann &tree, const Eigen::VectorXd &query,
                       double radius, int max_nn) {
                        std::vector<int> indices;
                        std::vector<double> distance2;
                        int k = tree.SearchHybrid(query, radius, max_nn,
                                                  indices, distance2);
                        if (k < 0)
                            throw std::runtime_error(
                                    "search_hybrid_vector_xd() error!");
                        return std::make_tuple(k, indices, distance2);
                    },
                    "query"_a, "radius"_a, "max_nn"_a);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_hybrid_vector_3d",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_hybrid_vector_xd",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_knn_vector_3d",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_knn_vector_xd",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_radius_vector_3d",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_radius_vector_xd",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_vector_3d",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_vector_xd",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_feature",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_geometry",
                                    map_kd_tree_flann_method_docs);
    docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_matrix_data",
                                    map_kd_tree_flann_method_docs);
}

}  // namespace geometry
}  // namespace open3d