1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/geometry/KDTreeFlann.h"
#include "pybind/docstring.h"
#include "pybind/geometry/geometry.h"
#include "pybind/geometry/geometry_trampoline.h"
namespace open3d {
namespace geometry {
void pybind_kdtreeflann_declarations(py::module &m) {
py::class_<KDTreeSearchParam> kdtreesearchparam(
m, "KDTreeSearchParam", "Base class for KDTree search parameters.");
// open3d.geometry.KDTreeSearchParam.Type
py::enum_<KDTreeSearchParam::SearchType> kdtree_search_param_type(
kdtreesearchparam, "Type", py::arithmetic());
kdtree_search_param_type
.value("KNNSearch", KDTreeSearchParam::SearchType::Knn)
.value("RadiusSearch", KDTreeSearchParam::SearchType::Radius)
.value("HybridSearch", KDTreeSearchParam::SearchType::Hybrid)
.export_values();
kdtree_search_param_type.attr("__doc__") = docstring::static_property(
py::cpp_function([](py::handle arg) -> std::string {
return "Enum class for Geometry types.";
}),
py::none(), py::none(), "");
py::class_<KDTreeSearchParamKNN> kdtreesearchparam_knn(
m, "KDTreeSearchParamKNN", kdtreesearchparam,
"KDTree search parameters for pure KNN search.");
py::class_<KDTreeSearchParamRadius> kdtreesearchparam_radius(
m, "KDTreeSearchParamRadius", kdtreesearchparam,
"KDTree search parameters for pure radius search.");
py::class_<KDTreeSearchParamHybrid> kdtreesearchparam_hybrid(
m, "KDTreeSearchParamHybrid", kdtreesearchparam,
"KDTree search parameters for hybrid KNN and radius search.");
py::class_<KDTreeFlann, std::shared_ptr<KDTreeFlann>> kdtreeflann(
m, "KDTreeFlann", "KDTree with FLANN for nearest neighbor search.");
}
void pybind_kdtreeflann_definitions(py::module &m) {
// open3d.geometry.KDTreeSearchParam
auto kdtreesearchparam = static_cast<py::class_<KDTreeSearchParam>>(
m.attr("KDTreeSearchParam"));
kdtreesearchparam.def("get_search_type", &KDTreeSearchParam::GetSearchType,
"Get the search type (KNN, Radius, Hybrid) for the "
"search parameter.");
docstring::ClassMethodDocInject(m, "KDTreeSearchParam", "get_search_type");
// open3d.geometry.KDTreeSearchParamKNN
auto kdtreesearchparam_knn = static_cast<py::class_<KDTreeSearchParamKNN>>(
m.attr("KDTreeSearchParamKNN"));
kdtreesearchparam_knn.def(py::init<int>(), "knn"_a = 30)
.def("__repr__",
[](const KDTreeSearchParamKNN ¶m) {
return fmt::format(
"KDTreeSearchParamKNN("
"knn={})",
param.knn_);
})
.def_readwrite("knn", &KDTreeSearchParamKNN::knn_,
"Number of the neighbors that will be searched.");
// open3d.geometry.KDTreeSearchParamRadius
auto kdtreesearchparam_radius =
static_cast<py::class_<KDTreeSearchParamRadius>>(
m.attr("KDTreeSearchParamRadius"));
kdtreesearchparam_radius.def(py::init<double>(), "radius"_a)
.def("__repr__",
[](const KDTreeSearchParamRadius ¶m) {
return fmt::format(
"KDTreeSearchParamRadius("
"radius={})",
param.radius_);
})
.def_readwrite("radius", &KDTreeSearchParamRadius::radius_,
"Search radius.");
// open3d.geometry.KDTreeSearchParamHybrid
auto kdtreesearchparam_hybrid =
static_cast<py::class_<KDTreeSearchParamHybrid>>(
m.attr("KDTreeSearchParamHybrid"));
kdtreesearchparam_hybrid
.def(py::init<double, int>(), "radius"_a, "max_nn"_a)
.def("__repr__",
[](const KDTreeSearchParamHybrid ¶m) {
return fmt::format(
"KDTreeSearchParamHybrid("
"radius={}, "
"max_nn={})",
param.radius_, param.max_nn_);
})
.def_readwrite("radius", &KDTreeSearchParamHybrid::radius_,
"Search radius.")
.def_readwrite(
"max_nn", &KDTreeSearchParamHybrid::max_nn_,
"At maximum, ``max_nn`` neighbors will be searched.");
// open3d.geometry.KDTreeFlann
auto kdtreeflann =
static_cast<py::class_<KDTreeFlann>>(m.attr("KDTreeFlann"));
static const std::unordered_map<std::string, std::string>
map_kd_tree_flann_method_docs = {
{"query", "The input query point."},
{"radius", "Search radius."},
{"max_nn",
"At maximum, ``max_nn`` neighbors will be searched."},
{"knn", "``knn`` neighbors will be searched."},
{"feature", "Feature data."},
{"data", "Matrix data."}};
kdtreeflann.def(py::init<>())
.def(py::init<const Eigen::MatrixXd &>(), "data"_a)
.def("set_matrix_data", &KDTreeFlann::SetMatrixData,
"Sets the data for the KDTree from a matrix.", "data"_a)
.def(py::init<const Geometry &>(), "geometry"_a)
.def("set_geometry", &KDTreeFlann::SetGeometry,
"Sets the data for the KDTree from geometry.", "geometry"_a)
.def(py::init<const pipelines::registration::Feature &>(),
"feature"_a)
.def("set_feature", &KDTreeFlann::SetFeature,
"Sets the data for the KDTree from the feature data.",
"feature"_a)
// Although these C++ style functions are fast by orders of
// magnitudes when similar queries are performed for a large number
// of times and memory management is involved, we prefer not to
// expose them in Python binding. Considering writing C++ functions
// if performance is an issue.
//.def("search_vector_3d_in_place",
//&KDTreeFlann::Search<Eigen::Vector3d>,
// "query"_a, "search_param"_a, "indices"_a, "distance2"_a)
//.def("search_knn_vector_3d_in_place",
// &KDTreeFlann::SearchKNN<Eigen::Vector3d>,
// "query"_a, "knn"_a, "indices"_a, "distance2"_a)
//.def("search_radius_vector_3d_in_place",
// &KDTreeFlann::SearchRadius<Eigen::Vector3d>, "query"_a,
// "radius"_a, "indices"_a, "distance2"_a)
//.def("search_hybrid_vector_3d_in_place",
// &KDTreeFlann::SearchHybrid<Eigen::Vector3d>, "query"_a,
// "radius"_a, "max_nn"_a, "indices"_a, "distance2"_a)
.def(
"search_vector_3d",
[](const KDTreeFlann &tree, const Eigen::Vector3d &query,
const KDTreeSearchParam ¶m) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.Search(query, param, indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_vector_3d() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "search_param"_a)
.def(
"search_knn_vector_3d",
[](const KDTreeFlann &tree, const Eigen::Vector3d &query,
int knn) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchKNN(query, knn, indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_knn_vector_3d() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "knn"_a)
.def(
"search_radius_vector_3d",
[](const KDTreeFlann &tree, const Eigen::Vector3d &query,
double radius) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchRadius(query, radius, indices,
distance2);
if (k < 0)
throw std::runtime_error(
"search_radius_vector_3d() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "radius"_a)
.def(
"search_hybrid_vector_3d",
[](const KDTreeFlann &tree, const Eigen::Vector3d &query,
double radius, int max_nn) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchHybrid(query, radius, max_nn,
indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_hybrid_vector_3d() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "radius"_a, "max_nn"_a)
.def(
"search_vector_xd",
[](const KDTreeFlann &tree, const Eigen::VectorXd &query,
const KDTreeSearchParam ¶m) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.Search(query, param, indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_vector_xd() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "search_param"_a)
.def(
"search_knn_vector_xd",
[](const KDTreeFlann &tree, const Eigen::VectorXd &query,
int knn) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchKNN(query, knn, indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_knn_vector_xd() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "knn"_a)
.def(
"search_radius_vector_xd",
[](const KDTreeFlann &tree, const Eigen::VectorXd &query,
double radius) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchRadius(query, radius, indices,
distance2);
if (k < 0)
throw std::runtime_error(
"search_radius_vector_xd() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "radius"_a)
.def(
"search_hybrid_vector_xd",
[](const KDTreeFlann &tree, const Eigen::VectorXd &query,
double radius, int max_nn) {
std::vector<int> indices;
std::vector<double> distance2;
int k = tree.SearchHybrid(query, radius, max_nn,
indices, distance2);
if (k < 0)
throw std::runtime_error(
"search_hybrid_vector_xd() error!");
return std::make_tuple(k, indices, distance2);
},
"query"_a, "radius"_a, "max_nn"_a);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_hybrid_vector_3d",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_hybrid_vector_xd",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_knn_vector_3d",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_knn_vector_xd",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_radius_vector_3d",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_radius_vector_xd",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_vector_3d",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "search_vector_xd",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_feature",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_geometry",
map_kd_tree_flann_method_docs);
docstring::ClassMethodDocInject(m, "KDTreeFlann", "set_matrix_data",
map_kd_tree_flann_method_docs);
}
} // namespace geometry
} // namespace open3d
|