1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/ml/contrib/IoU.h"
#include "open3d/core/TensorCheck.h"
#include "open3d/utility/Logging.h"
#include "pybind/core/tensor_converter.h"
#include "pybind/docstring.h"
#include "pybind/ml/contrib/contrib.h"
#include "pybind/open3d_pybind.h"
#include "pybind/pybind_utils.h"
namespace open3d {
namespace ml {
namespace contrib {
py::array IouBevCPU(py::array boxes_a, py::array boxes_b) {
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous();
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 5});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous();
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 5});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, core::Device("CPU:0"));
IoUBevCPUKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor);
}
py::array Iou3dCPU(py::array boxes_a, py::array boxes_b) {
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous();
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 7});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous();
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 7});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, core::Device("CPU:0"));
IoU3dCPUKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor);
}
#ifdef BUILD_CUDA_MODULE
py::array IouBevCUDA(py::array boxes_a, py::array boxes_b) {
core::Device cuda_device("CUDA:0");
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 5});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 5});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, cuda_device);
IoUBevCUDAKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor.To(core::Device("CPU:0")));
}
py::array Iou3dCUDA(py::array boxes_a, py::array boxes_b) {
core::Device cuda_device("CUDA:0");
core::Tensor boxes_a_tensor =
core::PyArrayToTensor(boxes_a, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_a_tensor, core::Float32);
core::AssertTensorShape(boxes_a_tensor, {utility::nullopt, 7});
int64_t num_a = boxes_a_tensor.GetLength();
core::Tensor boxes_b_tensor =
core::PyArrayToTensor(boxes_b, true).Contiguous().To(cuda_device);
core::AssertTensorDtype(boxes_b_tensor, core::Float32);
core::AssertTensorShape(boxes_b_tensor, {utility::nullopt, 7});
int64_t num_b = boxes_b_tensor.GetLength();
core::Tensor iou_tensor = core::Tensor(
{boxes_a_tensor.GetLength(), boxes_b_tensor.GetLength()},
core::Float32, cuda_device);
IoU3dCUDAKernel(boxes_a_tensor.GetDataPtr<float>(),
boxes_b_tensor.GetDataPtr<float>(),
iou_tensor.GetDataPtr<float>(), num_a, num_b);
return core::TensorToPyArray(iou_tensor.To(core::Device("CPU:0")));
}
#endif
void pybind_contrib_iou_definitions(py::module& m_contrib) {
m_contrib.def("iou_bev_cpu", &IouBevCPU, "boxes_a"_a, "boxes_b"_a);
m_contrib.def("iou_3d_cpu", &Iou3dCPU, "boxes_a"_a, "boxes_b"_a);
#ifdef BUILD_CUDA_MODULE
// These CUDA functions still uses numpy arrays as input and output, i.e.
// data will be copy to and from the CUDA device.
m_contrib.def("iou_bev_cuda", &IouBevCUDA, "boxes_a"_a, "boxes_b"_a);
m_contrib.def("iou_3d_cuda", &Iou3dCUDA, "boxes_a"_a, "boxes_b"_a);
#endif
}
} // namespace contrib
} // namespace ml
} // namespace open3d
|