1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/pipelines/odometry/Odometry.h"
#include "open3d/geometry/Image.h"
#include "open3d/geometry/RGBDImage.h"
#include "open3d/pipelines/odometry/OdometryOption.h"
#include "open3d/pipelines/odometry/RGBDOdometryJacobian.h"
#include "pybind/docstring.h"
#include "pybind/pipelines/odometry/odometry.h"
namespace open3d {
namespace pipelines {
namespace odometry {
template <class RGBDOdometryJacobianBase = RGBDOdometryJacobian>
class PyRGBDOdometryJacobian : public RGBDOdometryJacobianBase {
public:
using RGBDOdometryJacobianBase::RGBDOdometryJacobianBase;
void ComputeJacobianAndResidual(
int row,
std::vector<Eigen::Vector6d, utility::Vector6d_allocator> &J_r,
std::vector<double> &r,
std::vector<double> &w,
const geometry::RGBDImage &source,
const geometry::RGBDImage &target,
const geometry::Image &source_xyz,
const geometry::RGBDImage &target_dx,
const geometry::RGBDImage &target_dy,
const Eigen::Matrix3d &intrinsic,
const Eigen::Matrix4d &extrinsic,
const CorrespondenceSetPixelWise &corresps) const override {
PYBIND11_OVERLOAD_PURE(void, RGBDOdometryJacobianBase, row, J_r, r,
source, target, source_xyz, target_dx, target_dy,
extrinsic, corresps, intrinsic);
}
};
void pybind_odometry_declarations(py::module &m) {
py::module m_odometry = m.def_submodule("odometry", "Odometry pipeline.");
py::class_<OdometryOption> odometry_option(
m_odometry, "OdometryOption",
"Class that defines Odometry options.");
py::class_<RGBDOdometryJacobian,
PyRGBDOdometryJacobian<RGBDOdometryJacobian>>
jacobian(
m_odometry, "RGBDOdometryJacobian",
"Base class that computes Jacobian from two RGB-D images.");
py::class_<RGBDOdometryJacobianFromColorTerm,
PyRGBDOdometryJacobian<RGBDOdometryJacobianFromColorTerm>,
RGBDOdometryJacobian>
jacobian_color(m_odometry, "RGBDOdometryJacobianFromColorTerm",
R"(Class to Compute Jacobian using color term.
Energy: :math:`(I_p-I_q)^2.`
Reference:
F. Steinbrucker, J. Sturm, and D. Cremers.
Real-time visual odometry from dense RGB-D images.
In ICCV Workshops, 2011.)");
py::class_<RGBDOdometryJacobianFromHybridTerm,
PyRGBDOdometryJacobian<RGBDOdometryJacobianFromHybridTerm>,
RGBDOdometryJacobian>
jacobian_hybrid(m_odometry, "RGBDOdometryJacobianFromHybridTerm",
R"(Class to compute Jacobian using hybrid term
Energy: :math:`(I_p-I_q)^2 + \lambda(D_p-D_q')^2`
Reference:
J. Park, Q.-Y. Zhou, and V. Koltun
Anonymous submission.)");
}
void pybind_odometry_definitions(py::module &m) {
auto m_odometry = static_cast<py::module>(m.attr("odometry"));
// open3d.odometry.OdometryOption
auto odometry_option = static_cast<py::class_<OdometryOption>>(
m_odometry.attr("OdometryOption"));
odometry_option
.def(py::init(
[](std::vector<int> iteration_number_per_pyramid_level,
double depth_diff_max, double depth_min,
double depth_max) {
return new OdometryOption(
iteration_number_per_pyramid_level,
depth_diff_max, depth_min, depth_max);
}),
"iteration_number_per_pyramid_level"_a =
std::vector<int>{20, 10, 5},
"depth_diff_max"_a = 0.03, "depth_min"_a = 0.0,
"depth_max"_a = 4.0)
.def_readwrite("iteration_number_per_pyramid_level",
&OdometryOption::iteration_number_per_pyramid_level_,
"List(int): Iteration number per image pyramid "
"level, typically larger image in the pyramid have "
"lower iteration number to reduce computation "
"time.")
.def_readwrite("depth_diff_max", &OdometryOption::depth_diff_max_,
"Maximum depth difference to be considered as "
"correspondence. In depth image domain, if two "
"aligned pixels have a depth difference less than "
"specified value, they are considered as a "
"correspondence. Larger value induce more "
"aggressive search, but it is prone to unstable "
"result.")
.def_readwrite("depth_min", &OdometryOption::depth_min_,
"Pixels that has smaller than specified depth "
"values are ignored.")
.def_readwrite("depth_max", &OdometryOption::depth_max_,
"Pixels that has larger than specified depth values "
"are ignored.")
.def("__repr__", [](const OdometryOption &c) {
int num_pyramid_level =
(int)c.iteration_number_per_pyramid_level_.size();
std::string str_iteration_number_per_pyramid_level_ = "[ ";
for (int i = 0; i < num_pyramid_level; i++)
str_iteration_number_per_pyramid_level_ +=
std::to_string(
c.iteration_number_per_pyramid_level_[i]) +
", ";
str_iteration_number_per_pyramid_level_ += "] ";
return fmt::format(
"OdometryOption(\n"
"iteration_number_per_pyramid_level={},\n"
"depth_diff_max={},\n"
"depth_min={},\n"
"depth_max={},\n"
")",
str_iteration_number_per_pyramid_level_,
c.depth_diff_max_, c.depth_min_, c.depth_max_);
});
// open3d.odometry.RGBDOdometryJacobian
auto jacobian = static_cast<
py::class_<RGBDOdometryJacobian,
PyRGBDOdometryJacobian<RGBDOdometryJacobian>>>(
m_odometry.attr("RGBDOdometryJacobian"));
jacobian.def(
"compute_jacobian_and_residual",
&RGBDOdometryJacobian::ComputeJacobianAndResidual,
py::call_guard<py::gil_scoped_release>(),
"Function to compute i-th row of J and r the vector form of J_r is "
"basically 6x1 matrix, but it can be easily extendable to 6xn "
"matrix. See RGBDOdometryJacobianFromHybridTerm for this case."
"row"_a,
"J_r"_a, "r"_a, "w"_a, "source"_a, "target"_a, "source_xyz"_a,
"target_dx"_a, "target_dy"_a, "intrinsic"_a, "extrinsic"_a,
"corresps"_a);
// open3d.odometry.RGBDOdometryJacobianFromColorTerm: RGBDOdometryJacobian
auto jacobian_color = static_cast<py::class_<
RGBDOdometryJacobianFromColorTerm,
PyRGBDOdometryJacobian<RGBDOdometryJacobianFromColorTerm>,
RGBDOdometryJacobian>>(
m_odometry.attr("RGBDOdometryJacobianFromColorTerm"));
py::detail::bind_default_constructor<RGBDOdometryJacobianFromColorTerm>(
jacobian_color);
py::detail::bind_copy_functions<RGBDOdometryJacobianFromColorTerm>(
jacobian_color);
jacobian_color.def(
"__repr__", [](const RGBDOdometryJacobianFromColorTerm &te) {
return std::string("RGBDOdometryJacobianFromColorTerm");
});
// open3d.odometry.RGBDOdometryJacobianFromHybridTerm: RGBDOdometryJacobian
auto jacobian_hybrid = static_cast<py::class_<
RGBDOdometryJacobianFromHybridTerm,
PyRGBDOdometryJacobian<RGBDOdometryJacobianFromHybridTerm>,
RGBDOdometryJacobian>>(
m_odometry.attr("RGBDOdometryJacobianFromHybridTerm"));
py::detail::bind_default_constructor<RGBDOdometryJacobianFromHybridTerm>(
jacobian_hybrid);
py::detail::bind_copy_functions<RGBDOdometryJacobianFromHybridTerm>(
jacobian_hybrid);
jacobian_hybrid.def(
"__repr__", [](const RGBDOdometryJacobianFromHybridTerm &te) {
return std::string("RGBDOdometryJacobianFromHybridTerm");
});
m_odometry.def(
"compute_rgbd_odometry", &ComputeRGBDOdometry,
py::call_guard<py::gil_scoped_release>(),
"Function to estimate 6D rigid motion from two RGBD image pairs. "
"Output: (is_success, 4x4 motion matrix, 6x6 information matrix).",
"rgbd_source"_a, "rgbd_target"_a,
"pinhole_camera_intrinsic"_a = camera::PinholeCameraIntrinsic(),
"odo_init"_a = Eigen::Matrix4d::Identity(),
"jacobian"_a = RGBDOdometryJacobianFromHybridTerm(),
"option"_a = OdometryOption());
docstring::FunctionDocInject(
m_odometry, "compute_rgbd_odometry",
{
{"rgbd_source", "Source RGBD image."},
{"rgbd_target", "Target RGBD image."},
{"pinhole_camera_intrinsic", "Camera intrinsic parameters"},
{"odo_init", "Initial 4x4 motion matrix estimation."},
{"jacobian",
"The odometry Jacobian method to use. Can be "
"``"
"RGBDOdometryJacobianFromHybridTerm()`` or "
"``RGBDOdometryJacobianFromColorTerm("
").``"},
{"option", "Odometry hyper parameters."},
});
m_odometry.def("compute_correspondence", &ComputeCorrespondence,
py::call_guard<py::gil_scoped_release>(),
"Function to estimate point to point correspondences from "
"two depth "
"images. A vector of u_s, v_s, u_t, v_t which maps the 2d "
"coordinates of source to target.",
"intrinsic_matrix"_a, "extrinsic"_a, "depth_s"_a,
"depth_t"_a, "option"_a = OdometryOption());
docstring::FunctionDocInject(
m_odometry, "compute_correspondence",
{
{"intrinsic_matrix", "Camera intrinsic parameters."},
{"extrinsic",
"Estimation of transform from source to target."},
{"depth_s", "Source depth image."},
{"depth_t", "Target depth image."},
{"option", "Odometry hyper parameters."},
});
}
} // namespace odometry
} // namespace pipelines
} // namespace open3d
|