File: global_optimization.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (370 lines) | stat: -rw-r--r-- 20,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "open3d/pipelines/registration/GlobalOptimization.h"
#include "open3d/pipelines/registration/GlobalOptimizationConvergenceCriteria.h"
#include "open3d/pipelines/registration/GlobalOptimizationMethod.h"
#include "open3d/pipelines/registration/PoseGraph.h"
#include "pybind/docstring.h"
#include "pybind/pipelines/registration/registration.h"

namespace open3d {
namespace pipelines {
namespace registration {

template <class GlobalOptimizationMethodBase = GlobalOptimizationMethod>
class PyGlobalOptimizationMethod : public GlobalOptimizationMethodBase {
public:
    using GlobalOptimizationMethodBase::GlobalOptimizationMethodBase;
    void OptimizePoseGraph(
            PoseGraph &pose_graph,
            const GlobalOptimizationConvergenceCriteria &criteria,
            const GlobalOptimizationOption &option) const override {
        PYBIND11_OVERLOAD_PURE(void, GlobalOptimizationMethodBase, pose_graph,
                               criteria, option);
    }
};

void pybind_global_optimization_declarations(py::module &m_registration) {
    py::class_<PoseGraphNode, std::shared_ptr<PoseGraphNode>> pose_graph_node(
            m_registration, "PoseGraphNode", "Node of ``PoseGraph``.");
    auto pose_graph_node_vector = py::bind_vector<std::vector<PoseGraphNode>>(
            m_registration, "PoseGraphNodeVector");
    py::class_<PoseGraphEdge, std::shared_ptr<PoseGraphEdge>> pose_graph_edge(
            m_registration, "PoseGraphEdge", "Edge of ``PoseGraph``.");
    auto pose_graph_edge_vector = py::bind_vector<std::vector<PoseGraphEdge>>(
            m_registration, "PoseGraphEdgeVector");
    py::class_<PoseGraph, std::shared_ptr<PoseGraph>> pose_graph(
            m_registration, "PoseGraph",
            "Data structure defining the pose graph.");
    py::class_<GlobalOptimizationMethod,
               PyGlobalOptimizationMethod<GlobalOptimizationMethod>>
            global_optimization_method(
                    m_registration, "GlobalOptimizationMethod",
                    "Base class for global optimization method.");
    py::class_<GlobalOptimizationLevenbergMarquardt,
               PyGlobalOptimizationMethod<GlobalOptimizationLevenbergMarquardt>,
               GlobalOptimizationMethod>
            global_optimization_method_lm(
                    m_registration, "GlobalOptimizationLevenbergMarquardt",
                    "Global optimization with Levenberg-Marquardt algorithm. "
                    "Recommended over the Gauss-Newton method since the LM has "
                    "better convergence characteristics.");
    py::class_<GlobalOptimizationGaussNewton,
               PyGlobalOptimizationMethod<GlobalOptimizationGaussNewton>,
               GlobalOptimizationMethod>
            global_optimization_method_gn(
                    m_registration, "GlobalOptimizationGaussNewton",
                    "Global optimization with Gauss-Newton algorithm.");
    py::class_<GlobalOptimizationConvergenceCriteria> criteria(
            m_registration, "GlobalOptimizationConvergenceCriteria",
            "Convergence criteria of GlobalOptimization.");
    py::class_<GlobalOptimizationOption> option(
            m_registration, "GlobalOptimizationOption",
            "Option for GlobalOptimization.");
}

void pybind_global_optimization_definitions(py::module &m_registration) {
    // open3d.registration.PoseGraphNode
    auto pose_graph_node = static_cast<
            py::class_<PoseGraphNode, std::shared_ptr<PoseGraphNode>>>(
            m_registration.attr("PoseGraphNode"));
    py::detail::bind_default_constructor<PoseGraphNode>(pose_graph_node);
    py::detail::bind_copy_functions<PoseGraphNode>(pose_graph_node);
    pose_graph_node.def_readwrite("pose", &PoseGraphNode::pose_)
            .def(py::init([](Eigen::Matrix4d pose =
                                     Eigen::Matrix4d::Identity()) {
                     return new PoseGraphNode(pose);
                 }),
                 "pose"_a)
            .def("__repr__", [](const PoseGraphNode &rr) {
                return std::string(
                        "PoseGraphNode, access "
                        "pose to get its "
                        "current pose.");
            });

    // open3d.registration.PoseGraphNodeVector
    auto pose_graph_node_vector =
            static_cast<decltype(py::bind_vector<std::vector<PoseGraphNode>>(
                    m_registration, "PoseGraphNodeVector"))>(
                    m_registration.attr("PoseGraphNodeVector"));
    pose_graph_node_vector.attr("__doc__") = docstring::static_property(
            py::cpp_function([](py::handle arg) -> std::string {
                return "Vector of PoseGraphNode";
            }),
            py::none(), py::none(), "");

    // open3d.registration.PoseGraphEdge
    auto pose_graph_edge = static_cast<
            py::class_<PoseGraphEdge, std::shared_ptr<PoseGraphEdge>>>(
            m_registration.attr("PoseGraphEdge"));
    py::detail::bind_default_constructor<PoseGraphEdge>(pose_graph_edge);
    py::detail::bind_copy_functions<PoseGraphEdge>(pose_graph_edge);
    pose_graph_edge
            .def_readwrite("source_node_id", &PoseGraphEdge::source_node_id_,
                           "int: Source ``PoseGraphNode`` id.")
            .def_readwrite("target_node_id", &PoseGraphEdge::target_node_id_,
                           "int: Target ``PoseGraphNode`` id.")
            .def_readwrite(
                    "transformation", &PoseGraphEdge::transformation_,
                    "``4 x 4`` float64 numpy array: Transformation matrix.")
            .def_readwrite("information", &PoseGraphEdge::information_,
                           "``6 x 6`` float64 numpy array: Information matrix.")
            .def_readwrite("uncertain", &PoseGraphEdge::uncertain_,
                           "bool: Whether the edge is uncertain. Odometry edge "
                           "has uncertain == false, loop closure edges has "
                           "uncertain == true")
            .def_readwrite(
                    "confidence", &PoseGraphEdge::confidence_,
                    "float from 0 to 1: Confidence value of the edge. if "
                    "uncertain is true, it has confidence bounded in [0,1].   "
                    "1 means reliable, and 0 means "
                    "unreliable edge. This correspondence to "
                    "line process value in [Choi et al 2015] See "
                    "core/registration/globaloptimization.h for more details.")
            .def(py::init([](int source_node_id, int target_node_id,
                             Eigen::Matrix4d transformation,
                             Eigen::Matrix6d information, bool uncertain,
                             double confidence) {
                     return new PoseGraphEdge(source_node_id, target_node_id,
                                              transformation, information,
                                              uncertain, confidence);
                 }),
                 "source_node_id"_a = -1, "target_node_id"_a = -1,
                 "transformation"_a = Eigen::Matrix4d::Identity(),
                 "information"_a = Eigen::Matrix6d::Identity(),
                 "uncertain"_a = false, "confidence"_a = 1.0)
            .def("__repr__", [](const PoseGraphEdge &rr) {
                return std::string(
                               "PoseGraphEdge "
                               "from nodes ") +
                       std::to_string(rr.source_node_id_) +
                       std::string(" to ") +
                       std::to_string(rr.target_node_id_) +
                       std::string(
                               ", access transformation to get relative "
                               "transformation");
            });

    // open3d.registration.PoseGraphEdgeVector
    auto pose_graph_edge_vector =
            static_cast<decltype(py::bind_vector<std::vector<PoseGraphEdge>>(
                    m_registration, "PoseGraphEdgeVector"))>(
                    m_registration.attr("PoseGraphEdgeVector"));
    pose_graph_edge_vector.attr("__doc__") = docstring::static_property(
            py::cpp_function([](py::handle arg) -> std::string {
                return "Vector of PoseGraphEdge";
            }),
            py::none(), py::none(), "");

    // open3d.registration.PoseGraph
    auto pose_graph =
            static_cast<py::class_<PoseGraph, std::shared_ptr<PoseGraph>>>(
                    m_registration.attr("PoseGraph"));
    py::detail::bind_default_constructor<PoseGraph>(pose_graph);
    py::detail::bind_copy_functions<PoseGraph>(pose_graph);
    pose_graph
            .def_readwrite(
                    "nodes", &PoseGraph::nodes_,
                    "``List(PoseGraphNode)``: List of ``PoseGraphNode``.")
            .def_readwrite(
                    "edges", &PoseGraph::edges_,
                    "``List(PoseGraphEdge)``: List of ``PoseGraphEdge``.")
            .def("__repr__", [](const PoseGraph &rr) {
                return std::string("PoseGraph with ") +
                       std::to_string(rr.nodes_.size()) +
                       std::string(" nodes and ") +
                       std::to_string(rr.edges_.size()) +
                       std::string(" edges.");
            });

    // open3d.registration.GlobalOptimizationMethod
    auto global_optimization_method = static_cast<
            py::class_<GlobalOptimizationMethod,
                       PyGlobalOptimizationMethod<GlobalOptimizationMethod>>>(
            m_registration.attr("GlobalOptimizationMethod"));
    global_optimization_method.def("OptimizePoseGraph",
                                   &GlobalOptimizationMethod::OptimizePoseGraph,
                                   "pose_graph"_a, "criteria"_a, "option"_a,
                                   "Run pose graph optimization.");
    docstring::ClassMethodDocInject(
            m_registration, "GlobalOptimizationMethod", "OptimizePoseGraph",
            {{"pose_graph", "The pose graph to be optimized (in-place)."},
             {"criteria", "Convergence criteria."},
             {"option", "Global optimization options."}});

    auto global_optimization_method_lm = static_cast<py::class_<
            GlobalOptimizationLevenbergMarquardt,
            PyGlobalOptimizationMethod<GlobalOptimizationLevenbergMarquardt>,
            GlobalOptimizationMethod>>(
            m_registration.attr("GlobalOptimizationLevenbergMarquardt"));
    py::detail::bind_default_constructor<GlobalOptimizationLevenbergMarquardt>(
            global_optimization_method_lm);
    py::detail::bind_copy_functions<GlobalOptimizationLevenbergMarquardt>(
            global_optimization_method_lm);
    global_optimization_method_lm.def(
            "__repr__", [](const GlobalOptimizationLevenbergMarquardt &te) {
                return std::string("GlobalOptimizationLevenbergMarquardt");
            });

    auto global_optimization_method_gn = static_cast<py::class_<
            GlobalOptimizationGaussNewton,
            PyGlobalOptimizationMethod<GlobalOptimizationGaussNewton>,
            GlobalOptimizationMethod>>(
            m_registration.attr("GlobalOptimizationGaussNewton"));
    py::detail::bind_default_constructor<GlobalOptimizationGaussNewton>(
            global_optimization_method_gn);
    py::detail::bind_copy_functions<GlobalOptimizationGaussNewton>(
            global_optimization_method_gn);
    global_optimization_method_gn.def(
            "__repr__", [](const GlobalOptimizationGaussNewton &te) {
                return std::string("GlobalOptimizationGaussNewton");
            });

    auto criteria =
            static_cast<py::class_<GlobalOptimizationConvergenceCriteria>>(
                    m_registration.attr(
                            "GlobalOptimizationConvergenceCriteria"));
    py::detail::bind_default_constructor<GlobalOptimizationConvergenceCriteria>(
            criteria);
    py::detail::bind_copy_functions<GlobalOptimizationConvergenceCriteria>(
            criteria);
    criteria.def_readwrite(
                    "max_iteration",
                    &GlobalOptimizationConvergenceCriteria::max_iteration_,
                    "int: Maximum iteration number for iterative optimization "
                    "module.")
            .def_readwrite("min_relative_increment",
                           &GlobalOptimizationConvergenceCriteria::
                                   min_relative_increment_,
                           "float: Minimum relative increments.")
            .def_readwrite("min_relative_residual_increment",
                           &GlobalOptimizationConvergenceCriteria::
                                   min_relative_residual_increment_,
                           "float: Minimum relative residual increments.")
            .def_readwrite(
                    "min_right_term",
                    &GlobalOptimizationConvergenceCriteria::min_right_term_,
                    "float: Minimum right term value.")
            .def_readwrite(
                    "min_residual",
                    &GlobalOptimizationConvergenceCriteria::min_residual_,
                    "float: Minimum residual value.")
            .def_readwrite(
                    "max_iteration_lm",
                    &GlobalOptimizationConvergenceCriteria::max_iteration_lm_,
                    "int: Maximum iteration number for Levenberg Marquardt "
                    "method. max_iteration_lm is used for additional "
                    "Levenberg-Marquardt inner loop that automatically changes "
                    "steepest gradient gain.")
            .def_readwrite(
                    "upper_scale_factor",
                    &GlobalOptimizationConvergenceCriteria::upper_scale_factor_,
                    "float: Upper scale factor value. Scaling factors are used "
                    "for levenberg marquardt algorithm these are scaling "
                    "factors that increase/decrease lambda used in H_LM = H + "
                    "lambda * I")
            .def_readwrite(
                    "lower_scale_factor",
                    &GlobalOptimizationConvergenceCriteria::lower_scale_factor_,
                    "float: Lower scale factor value.")
            .def("__repr__", [](const GlobalOptimizationConvergenceCriteria
                                        &cr) {
                return std::string("GlobalOptimizationConvergenceCriteria") +
                       std::string("\n> max_iteration : ") +
                       std::to_string(cr.max_iteration_) +
                       std::string("\n> min_relative_increment : ") +
                       std::to_string(cr.min_relative_increment_) +
                       std::string("\n> min_relative_residual_increment : ") +
                       std::to_string(cr.min_relative_residual_increment_) +
                       std::string("\n> min_right_term : ") +
                       std::to_string(cr.min_right_term_) +
                       std::string("\n> min_residual : ") +
                       std::to_string(cr.min_residual_) +
                       std::string("\n> max_iteration_lm : ") +
                       std::to_string(cr.max_iteration_lm_) +
                       std::string("\n> upper_scale_factor : ") +
                       std::to_string(cr.upper_scale_factor_) +
                       std::string("\n> lower_scale_factor : ") +
                       std::to_string(cr.lower_scale_factor_);
            });

    auto option = static_cast<py::class_<GlobalOptimizationOption>>(
            m_registration.attr("GlobalOptimizationOption"));
    py::detail::bind_default_constructor<GlobalOptimizationOption>(option);
    py::detail::bind_copy_functions<GlobalOptimizationOption>(option);
    option.def_readwrite(
                  "max_correspondence_distance",
                  &GlobalOptimizationOption::max_correspondence_distance_,
                  "float: Identifies which distance value is used for "
                  "finding neighboring points when making information "
                  "matrix. According to [Choi et al 2015], this "
                  "distance is used for determining $mu, a line process "
                  "weight.")
            .def_readwrite("edge_prune_threshold",
                           &GlobalOptimizationOption::edge_prune_threshold_,
                           "float: According to [Choi et al 2015], "
                           "line_process weight < edge_prune_threshold (0.25) "
                           "is pruned.")
            .def_readwrite("preference_loop_closure",
                           &GlobalOptimizationOption::preference_loop_closure_,
                           "float: Balancing parameter to decide which one is "
                           "more reliable: odometry vs loop-closure. [0,1] -> "
                           "try to unchange odometry edges, [1) -> try to "
                           "utilize loop-closure. Recommendation: 0.1 for RGBD "
                           "Odometry, 2.0 for fragment registration.")
            .def_readwrite("reference_node",
                           &GlobalOptimizationOption::reference_node_,
                           "int: The pose of this node is unchanged after "
                           "optimization.")
            .def(py::init([](double max_correspondence_distance,
                             double edge_prune_threshold,
                             double preference_loop_closure,
                             int reference_node) {
                     return new GlobalOptimizationOption(
                             max_correspondence_distance, edge_prune_threshold,
                             preference_loop_closure, reference_node);
                 }),
                 "max_correspondence_distance"_a = 0.03,
                 "edge_prune_threshold"_a = 0.25,
                 "preference_loop_closure"_a = 1.0, "reference_node"_a = -1)
            .def("__repr__", [](const GlobalOptimizationOption &goo) {
                return std::string("GlobalOptimizationOption") +
                       std::string("\n> max_correspondence_distance : ") +
                       std::to_string(goo.max_correspondence_distance_) +
                       std::string("\n> edge_prune_threshold : ") +
                       std::to_string(goo.edge_prune_threshold_) +
                       std::string("\n> preference_loop_closure : ") +
                       std::to_string(goo.preference_loop_closure_) +
                       std::string("\n> reference_node : ") +
                       std::to_string(goo.reference_node_);
            });
    m_registration.def(
            "global_optimization",
            [](PoseGraph &pose_graph, const GlobalOptimizationMethod &method,
               const GlobalOptimizationConvergenceCriteria &criteria,
               const GlobalOptimizationOption &option) {
                GlobalOptimization(pose_graph, method, criteria, option);
            },
            "Function to optimize PoseGraph", "pose_graph"_a, "method"_a,
            "criteria"_a, "option"_a);
    docstring::FunctionDocInject(
            m_registration, "global_optimization",
            {{"pose_graph", "The pose_graph to be optimized (in-place)."},
             {"method",
              "Global optimization method. Either "
              "``GlobalOptimizationGaussNewton()`` or "
              "``GlobalOptimizationLevenbergMarquardt("
              ")``."},
             {"criteria", "Global optimization convergence criteria."},
             {"option", "Global optimization option."}});
}

}  // namespace registration
}  // namespace pipelines
}  // namespace open3d