1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/pipelines/registration/GlobalOptimization.h"
#include "open3d/pipelines/registration/GlobalOptimizationConvergenceCriteria.h"
#include "open3d/pipelines/registration/GlobalOptimizationMethod.h"
#include "open3d/pipelines/registration/PoseGraph.h"
#include "pybind/docstring.h"
#include "pybind/pipelines/registration/registration.h"
namespace open3d {
namespace pipelines {
namespace registration {
template <class GlobalOptimizationMethodBase = GlobalOptimizationMethod>
class PyGlobalOptimizationMethod : public GlobalOptimizationMethodBase {
public:
using GlobalOptimizationMethodBase::GlobalOptimizationMethodBase;
void OptimizePoseGraph(
PoseGraph &pose_graph,
const GlobalOptimizationConvergenceCriteria &criteria,
const GlobalOptimizationOption &option) const override {
PYBIND11_OVERLOAD_PURE(void, GlobalOptimizationMethodBase, pose_graph,
criteria, option);
}
};
void pybind_global_optimization_declarations(py::module &m_registration) {
py::class_<PoseGraphNode, std::shared_ptr<PoseGraphNode>> pose_graph_node(
m_registration, "PoseGraphNode", "Node of ``PoseGraph``.");
auto pose_graph_node_vector = py::bind_vector<std::vector<PoseGraphNode>>(
m_registration, "PoseGraphNodeVector");
py::class_<PoseGraphEdge, std::shared_ptr<PoseGraphEdge>> pose_graph_edge(
m_registration, "PoseGraphEdge", "Edge of ``PoseGraph``.");
auto pose_graph_edge_vector = py::bind_vector<std::vector<PoseGraphEdge>>(
m_registration, "PoseGraphEdgeVector");
py::class_<PoseGraph, std::shared_ptr<PoseGraph>> pose_graph(
m_registration, "PoseGraph",
"Data structure defining the pose graph.");
py::class_<GlobalOptimizationMethod,
PyGlobalOptimizationMethod<GlobalOptimizationMethod>>
global_optimization_method(
m_registration, "GlobalOptimizationMethod",
"Base class for global optimization method.");
py::class_<GlobalOptimizationLevenbergMarquardt,
PyGlobalOptimizationMethod<GlobalOptimizationLevenbergMarquardt>,
GlobalOptimizationMethod>
global_optimization_method_lm(
m_registration, "GlobalOptimizationLevenbergMarquardt",
"Global optimization with Levenberg-Marquardt algorithm. "
"Recommended over the Gauss-Newton method since the LM has "
"better convergence characteristics.");
py::class_<GlobalOptimizationGaussNewton,
PyGlobalOptimizationMethod<GlobalOptimizationGaussNewton>,
GlobalOptimizationMethod>
global_optimization_method_gn(
m_registration, "GlobalOptimizationGaussNewton",
"Global optimization with Gauss-Newton algorithm.");
py::class_<GlobalOptimizationConvergenceCriteria> criteria(
m_registration, "GlobalOptimizationConvergenceCriteria",
"Convergence criteria of GlobalOptimization.");
py::class_<GlobalOptimizationOption> option(
m_registration, "GlobalOptimizationOption",
"Option for GlobalOptimization.");
}
void pybind_global_optimization_definitions(py::module &m_registration) {
// open3d.registration.PoseGraphNode
auto pose_graph_node = static_cast<
py::class_<PoseGraphNode, std::shared_ptr<PoseGraphNode>>>(
m_registration.attr("PoseGraphNode"));
py::detail::bind_default_constructor<PoseGraphNode>(pose_graph_node);
py::detail::bind_copy_functions<PoseGraphNode>(pose_graph_node);
pose_graph_node.def_readwrite("pose", &PoseGraphNode::pose_)
.def(py::init([](Eigen::Matrix4d pose =
Eigen::Matrix4d::Identity()) {
return new PoseGraphNode(pose);
}),
"pose"_a)
.def("__repr__", [](const PoseGraphNode &rr) {
return std::string(
"PoseGraphNode, access "
"pose to get its "
"current pose.");
});
// open3d.registration.PoseGraphNodeVector
auto pose_graph_node_vector =
static_cast<decltype(py::bind_vector<std::vector<PoseGraphNode>>(
m_registration, "PoseGraphNodeVector"))>(
m_registration.attr("PoseGraphNodeVector"));
pose_graph_node_vector.attr("__doc__") = docstring::static_property(
py::cpp_function([](py::handle arg) -> std::string {
return "Vector of PoseGraphNode";
}),
py::none(), py::none(), "");
// open3d.registration.PoseGraphEdge
auto pose_graph_edge = static_cast<
py::class_<PoseGraphEdge, std::shared_ptr<PoseGraphEdge>>>(
m_registration.attr("PoseGraphEdge"));
py::detail::bind_default_constructor<PoseGraphEdge>(pose_graph_edge);
py::detail::bind_copy_functions<PoseGraphEdge>(pose_graph_edge);
pose_graph_edge
.def_readwrite("source_node_id", &PoseGraphEdge::source_node_id_,
"int: Source ``PoseGraphNode`` id.")
.def_readwrite("target_node_id", &PoseGraphEdge::target_node_id_,
"int: Target ``PoseGraphNode`` id.")
.def_readwrite(
"transformation", &PoseGraphEdge::transformation_,
"``4 x 4`` float64 numpy array: Transformation matrix.")
.def_readwrite("information", &PoseGraphEdge::information_,
"``6 x 6`` float64 numpy array: Information matrix.")
.def_readwrite("uncertain", &PoseGraphEdge::uncertain_,
"bool: Whether the edge is uncertain. Odometry edge "
"has uncertain == false, loop closure edges has "
"uncertain == true")
.def_readwrite(
"confidence", &PoseGraphEdge::confidence_,
"float from 0 to 1: Confidence value of the edge. if "
"uncertain is true, it has confidence bounded in [0,1]. "
"1 means reliable, and 0 means "
"unreliable edge. This correspondence to "
"line process value in [Choi et al 2015] See "
"core/registration/globaloptimization.h for more details.")
.def(py::init([](int source_node_id, int target_node_id,
Eigen::Matrix4d transformation,
Eigen::Matrix6d information, bool uncertain,
double confidence) {
return new PoseGraphEdge(source_node_id, target_node_id,
transformation, information,
uncertain, confidence);
}),
"source_node_id"_a = -1, "target_node_id"_a = -1,
"transformation"_a = Eigen::Matrix4d::Identity(),
"information"_a = Eigen::Matrix6d::Identity(),
"uncertain"_a = false, "confidence"_a = 1.0)
.def("__repr__", [](const PoseGraphEdge &rr) {
return std::string(
"PoseGraphEdge "
"from nodes ") +
std::to_string(rr.source_node_id_) +
std::string(" to ") +
std::to_string(rr.target_node_id_) +
std::string(
", access transformation to get relative "
"transformation");
});
// open3d.registration.PoseGraphEdgeVector
auto pose_graph_edge_vector =
static_cast<decltype(py::bind_vector<std::vector<PoseGraphEdge>>(
m_registration, "PoseGraphEdgeVector"))>(
m_registration.attr("PoseGraphEdgeVector"));
pose_graph_edge_vector.attr("__doc__") = docstring::static_property(
py::cpp_function([](py::handle arg) -> std::string {
return "Vector of PoseGraphEdge";
}),
py::none(), py::none(), "");
// open3d.registration.PoseGraph
auto pose_graph =
static_cast<py::class_<PoseGraph, std::shared_ptr<PoseGraph>>>(
m_registration.attr("PoseGraph"));
py::detail::bind_default_constructor<PoseGraph>(pose_graph);
py::detail::bind_copy_functions<PoseGraph>(pose_graph);
pose_graph
.def_readwrite(
"nodes", &PoseGraph::nodes_,
"``List(PoseGraphNode)``: List of ``PoseGraphNode``.")
.def_readwrite(
"edges", &PoseGraph::edges_,
"``List(PoseGraphEdge)``: List of ``PoseGraphEdge``.")
.def("__repr__", [](const PoseGraph &rr) {
return std::string("PoseGraph with ") +
std::to_string(rr.nodes_.size()) +
std::string(" nodes and ") +
std::to_string(rr.edges_.size()) +
std::string(" edges.");
});
// open3d.registration.GlobalOptimizationMethod
auto global_optimization_method = static_cast<
py::class_<GlobalOptimizationMethod,
PyGlobalOptimizationMethod<GlobalOptimizationMethod>>>(
m_registration.attr("GlobalOptimizationMethod"));
global_optimization_method.def("OptimizePoseGraph",
&GlobalOptimizationMethod::OptimizePoseGraph,
"pose_graph"_a, "criteria"_a, "option"_a,
"Run pose graph optimization.");
docstring::ClassMethodDocInject(
m_registration, "GlobalOptimizationMethod", "OptimizePoseGraph",
{{"pose_graph", "The pose graph to be optimized (in-place)."},
{"criteria", "Convergence criteria."},
{"option", "Global optimization options."}});
auto global_optimization_method_lm = static_cast<py::class_<
GlobalOptimizationLevenbergMarquardt,
PyGlobalOptimizationMethod<GlobalOptimizationLevenbergMarquardt>,
GlobalOptimizationMethod>>(
m_registration.attr("GlobalOptimizationLevenbergMarquardt"));
py::detail::bind_default_constructor<GlobalOptimizationLevenbergMarquardt>(
global_optimization_method_lm);
py::detail::bind_copy_functions<GlobalOptimizationLevenbergMarquardt>(
global_optimization_method_lm);
global_optimization_method_lm.def(
"__repr__", [](const GlobalOptimizationLevenbergMarquardt &te) {
return std::string("GlobalOptimizationLevenbergMarquardt");
});
auto global_optimization_method_gn = static_cast<py::class_<
GlobalOptimizationGaussNewton,
PyGlobalOptimizationMethod<GlobalOptimizationGaussNewton>,
GlobalOptimizationMethod>>(
m_registration.attr("GlobalOptimizationGaussNewton"));
py::detail::bind_default_constructor<GlobalOptimizationGaussNewton>(
global_optimization_method_gn);
py::detail::bind_copy_functions<GlobalOptimizationGaussNewton>(
global_optimization_method_gn);
global_optimization_method_gn.def(
"__repr__", [](const GlobalOptimizationGaussNewton &te) {
return std::string("GlobalOptimizationGaussNewton");
});
auto criteria =
static_cast<py::class_<GlobalOptimizationConvergenceCriteria>>(
m_registration.attr(
"GlobalOptimizationConvergenceCriteria"));
py::detail::bind_default_constructor<GlobalOptimizationConvergenceCriteria>(
criteria);
py::detail::bind_copy_functions<GlobalOptimizationConvergenceCriteria>(
criteria);
criteria.def_readwrite(
"max_iteration",
&GlobalOptimizationConvergenceCriteria::max_iteration_,
"int: Maximum iteration number for iterative optimization "
"module.")
.def_readwrite("min_relative_increment",
&GlobalOptimizationConvergenceCriteria::
min_relative_increment_,
"float: Minimum relative increments.")
.def_readwrite("min_relative_residual_increment",
&GlobalOptimizationConvergenceCriteria::
min_relative_residual_increment_,
"float: Minimum relative residual increments.")
.def_readwrite(
"min_right_term",
&GlobalOptimizationConvergenceCriteria::min_right_term_,
"float: Minimum right term value.")
.def_readwrite(
"min_residual",
&GlobalOptimizationConvergenceCriteria::min_residual_,
"float: Minimum residual value.")
.def_readwrite(
"max_iteration_lm",
&GlobalOptimizationConvergenceCriteria::max_iteration_lm_,
"int: Maximum iteration number for Levenberg Marquardt "
"method. max_iteration_lm is used for additional "
"Levenberg-Marquardt inner loop that automatically changes "
"steepest gradient gain.")
.def_readwrite(
"upper_scale_factor",
&GlobalOptimizationConvergenceCriteria::upper_scale_factor_,
"float: Upper scale factor value. Scaling factors are used "
"for levenberg marquardt algorithm these are scaling "
"factors that increase/decrease lambda used in H_LM = H + "
"lambda * I")
.def_readwrite(
"lower_scale_factor",
&GlobalOptimizationConvergenceCriteria::lower_scale_factor_,
"float: Lower scale factor value.")
.def("__repr__", [](const GlobalOptimizationConvergenceCriteria
&cr) {
return std::string("GlobalOptimizationConvergenceCriteria") +
std::string("\n> max_iteration : ") +
std::to_string(cr.max_iteration_) +
std::string("\n> min_relative_increment : ") +
std::to_string(cr.min_relative_increment_) +
std::string("\n> min_relative_residual_increment : ") +
std::to_string(cr.min_relative_residual_increment_) +
std::string("\n> min_right_term : ") +
std::to_string(cr.min_right_term_) +
std::string("\n> min_residual : ") +
std::to_string(cr.min_residual_) +
std::string("\n> max_iteration_lm : ") +
std::to_string(cr.max_iteration_lm_) +
std::string("\n> upper_scale_factor : ") +
std::to_string(cr.upper_scale_factor_) +
std::string("\n> lower_scale_factor : ") +
std::to_string(cr.lower_scale_factor_);
});
auto option = static_cast<py::class_<GlobalOptimizationOption>>(
m_registration.attr("GlobalOptimizationOption"));
py::detail::bind_default_constructor<GlobalOptimizationOption>(option);
py::detail::bind_copy_functions<GlobalOptimizationOption>(option);
option.def_readwrite(
"max_correspondence_distance",
&GlobalOptimizationOption::max_correspondence_distance_,
"float: Identifies which distance value is used for "
"finding neighboring points when making information "
"matrix. According to [Choi et al 2015], this "
"distance is used for determining $mu, a line process "
"weight.")
.def_readwrite("edge_prune_threshold",
&GlobalOptimizationOption::edge_prune_threshold_,
"float: According to [Choi et al 2015], "
"line_process weight < edge_prune_threshold (0.25) "
"is pruned.")
.def_readwrite("preference_loop_closure",
&GlobalOptimizationOption::preference_loop_closure_,
"float: Balancing parameter to decide which one is "
"more reliable: odometry vs loop-closure. [0,1] -> "
"try to unchange odometry edges, [1) -> try to "
"utilize loop-closure. Recommendation: 0.1 for RGBD "
"Odometry, 2.0 for fragment registration.")
.def_readwrite("reference_node",
&GlobalOptimizationOption::reference_node_,
"int: The pose of this node is unchanged after "
"optimization.")
.def(py::init([](double max_correspondence_distance,
double edge_prune_threshold,
double preference_loop_closure,
int reference_node) {
return new GlobalOptimizationOption(
max_correspondence_distance, edge_prune_threshold,
preference_loop_closure, reference_node);
}),
"max_correspondence_distance"_a = 0.03,
"edge_prune_threshold"_a = 0.25,
"preference_loop_closure"_a = 1.0, "reference_node"_a = -1)
.def("__repr__", [](const GlobalOptimizationOption &goo) {
return std::string("GlobalOptimizationOption") +
std::string("\n> max_correspondence_distance : ") +
std::to_string(goo.max_correspondence_distance_) +
std::string("\n> edge_prune_threshold : ") +
std::to_string(goo.edge_prune_threshold_) +
std::string("\n> preference_loop_closure : ") +
std::to_string(goo.preference_loop_closure_) +
std::string("\n> reference_node : ") +
std::to_string(goo.reference_node_);
});
m_registration.def(
"global_optimization",
[](PoseGraph &pose_graph, const GlobalOptimizationMethod &method,
const GlobalOptimizationConvergenceCriteria &criteria,
const GlobalOptimizationOption &option) {
GlobalOptimization(pose_graph, method, criteria, option);
},
"Function to optimize PoseGraph", "pose_graph"_a, "method"_a,
"criteria"_a, "option"_a);
docstring::FunctionDocInject(
m_registration, "global_optimization",
{{"pose_graph", "The pose_graph to be optimized (in-place)."},
{"method",
"Global optimization method. Either "
"``GlobalOptimizationGaussNewton()`` or "
"``GlobalOptimizationLevenbergMarquardt("
")``."},
{"criteria", "Global optimization convergence criteria."},
{"option", "Global optimization option."}});
}
} // namespace registration
} // namespace pipelines
} // namespace open3d
|