File: registration.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (768 lines) | stat: -rw-r--r-- 40,295 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "open3d/pipelines/registration/Registration.h"

#include <memory>
#include <utility>

#include "open3d/geometry/PointCloud.h"
#include "open3d/pipelines/registration/ColoredICP.h"
#include "open3d/pipelines/registration/CorrespondenceChecker.h"
#include "open3d/pipelines/registration/FastGlobalRegistration.h"
#include "open3d/pipelines/registration/Feature.h"
#include "open3d/pipelines/registration/GeneralizedICP.h"
#include "open3d/pipelines/registration/RobustKernel.h"
#include "open3d/pipelines/registration/TransformationEstimation.h"
#include "open3d/utility/Logging.h"
#include "pybind/docstring.h"
#include "pybind/pipelines/registration/registration.h"

namespace open3d {
namespace pipelines {
namespace registration {

template <class TransformationEstimationBase = TransformationEstimation>
class PyTransformationEstimation : public TransformationEstimationBase {
public:
    using TransformationEstimationBase::TransformationEstimationBase;
    TransformationEstimationType GetTransformationEstimationType()
            const override {
        PYBIND11_OVERLOAD_PURE(TransformationEstimationType,
                               TransformationEstimationBase, void);
    }
    double ComputeRMSE(const geometry::PointCloud &source,
                       const geometry::PointCloud &target,
                       const CorrespondenceSet &corres) const override {
        PYBIND11_OVERLOAD_PURE(double, TransformationEstimationBase, source,
                               target, corres);
    }
    Eigen::Matrix4d ComputeTransformation(
            const geometry::PointCloud &source,
            const geometry::PointCloud &target,
            const CorrespondenceSet &corres) const override {
        PYBIND11_OVERLOAD_PURE(Eigen::Matrix4d, TransformationEstimationBase,
                               source, target, corres);
    }
};

template <class CorrespondenceCheckerBase = CorrespondenceChecker>
class PyCorrespondenceChecker : public CorrespondenceCheckerBase {
public:
    using CorrespondenceCheckerBase::CorrespondenceCheckerBase;
    bool Check(const geometry::PointCloud &source,
               const geometry::PointCloud &target,
               const CorrespondenceSet &corres,
               const Eigen::Matrix4d &transformation) const override {
        PYBIND11_OVERLOAD_PURE(bool, CorrespondenceCheckerBase, source, target,
                               corres, transformation);
    }
};

void pybind_registration_declarations(py::module &m) {
    py::module m_registration =
            m.def_submodule("registration", "Registration pipeline.");
    py::class_<ICPConvergenceCriteria> convergence_criteria(
            m_registration, "ICPConvergenceCriteria",
            "Class that defines the convergence criteria of ICP. ICP "
            "algorithm "
            "stops if the relative change of fitness and rmse hit "
            "``relative_fitness`` and ``relative_rmse`` individually, "
            "or the "
            "iteration number exceeds ``max_iteration``.");
    py::class_<RANSACConvergenceCriteria> ransac_criteria(
            m_registration, "RANSACConvergenceCriteria",
            "Class that defines the convergence criteria of "
            "RANSAC. RANSAC algorithm stops if the iteration "
            "number hits ``max_iteration``, or the fitness "
            "measured during validation suggests that the "
            "algorithm can be terminated early with some "
            "``confidence``. Early termination takes place "
            "when the number of iterations reaches ``k = "
            "log(1 - confidence)/log(1 - fitness^{ransac_n})``, "
            "where ``ransac_n`` is the number of points used "
            "during a ransac iteration. Use confidence=1.0 "
            "to avoid early termination.");
    py::class_<TransformationEstimation,
               PyTransformationEstimation<TransformationEstimation>>
            te(m_registration, "TransformationEstimation",
               "Base class that estimates a transformation between two point "
               "clouds. The virtual function ComputeTransformation() must be "
               "implemented in subclasses.");
    py::class_<TransformationEstimationPointToPoint,
               PyTransformationEstimation<TransformationEstimationPointToPoint>,
               TransformationEstimation>
            te_p2p(m_registration, "TransformationEstimationPointToPoint",
                   "Class to estimate a transformation for point to point "
                   "distance.");
    py::class_<TransformationEstimationPointToPlane,
               PyTransformationEstimation<TransformationEstimationPointToPlane>,
               TransformationEstimation>
            te_p2l(m_registration, "TransformationEstimationPointToPlane",
                   "Class to estimate a transformation for point to plane "
                   "distance.");
    py::class_<
            TransformationEstimationForColoredICP,
            PyTransformationEstimation<TransformationEstimationForColoredICP>,
            TransformationEstimation>
            te_col(m_registration, "TransformationEstimationForColoredICP",
                   "Class to estimate a transformation between two point "
                   "clouds using color information");
    py::class_<TransformationEstimationForGeneralizedICP,
               PyTransformationEstimation<
                       TransformationEstimationForGeneralizedICP>,
               TransformationEstimation>
            te_gicp(m_registration, "TransformationEstimationForGeneralizedICP",
                    "Class to estimate a transformation for Generalized ICP.");
    py::class_<CorrespondenceChecker,
               PyCorrespondenceChecker<CorrespondenceChecker>>
            cc(m_registration, "CorrespondenceChecker",
               "Base class that checks if two (small) point clouds can be "
               "aligned. This class is used in feature based matching "
               "algorithms (such as RANSAC and FastGlobalRegistration) to "
               "prune out outlier correspondences. The virtual function "
               "Check() must be implemented in subclasses.");
    py::class_<CorrespondenceCheckerBasedOnEdgeLength,
               PyCorrespondenceChecker<CorrespondenceCheckerBasedOnEdgeLength>,
               CorrespondenceChecker>
            cc_el(m_registration, "CorrespondenceCheckerBasedOnEdgeLength",
                  "Check if two point clouds build the polygons with similar "
                  "edge lengths. That is, checks if the lengths of any two "
                  "arbitrary edges (line formed by two vertices) individually "
                  "drawn within the source point cloud and within the target "
                  "point cloud with correspondences are similar. The only "
                  "parameter similarity_threshold is a number between 0 "
                  "(loose) and 1 (strict)");
    py::class_<CorrespondenceCheckerBasedOnDistance,
               PyCorrespondenceChecker<CorrespondenceCheckerBasedOnDistance>,
               CorrespondenceChecker>
            cc_d(m_registration, "CorrespondenceCheckerBasedOnDistance",
                 "Class to check if aligned point clouds are close (less than "
                 "specified threshold).");
    py::class_<CorrespondenceCheckerBasedOnNormal,
               PyCorrespondenceChecker<CorrespondenceCheckerBasedOnNormal>,
               CorrespondenceChecker>
            cc_n(m_registration, "CorrespondenceCheckerBasedOnNormal",
                 "Class to check if two aligned point clouds have similar "
                 "normals. It considers vertex normal affinity of any "
                 "correspondences. It computes dot product of two normal "
                 "vectors. It takes radian value for the threshold.");
    py::class_<FastGlobalRegistrationOption> fgr_option(
            m_registration, "FastGlobalRegistrationOption",
            "Options for FastGlobalRegistration.");
    py::class_<RegistrationResult> registration_result(
            m_registration, "RegistrationResult",
            "Class that contains the registration results.");
    pybind_feature_declarations(m_registration);
    pybind_global_optimization_declarations(m_registration);
    pybind_robust_kernels_declarations(m_registration);
}
void pybind_registration_definitions(py::module &m) {
    auto m_registration = static_cast<py::module>(m.attr("registration"));
    // open3d.registration.ICPConvergenceCriteria
    auto convergence_criteria = static_cast<py::class_<ICPConvergenceCriteria>>(
            m_registration.attr("ICPConvergenceCriteria"));
    py::detail::bind_copy_functions<ICPConvergenceCriteria>(
            convergence_criteria);
    convergence_criteria
            .def(py::init([](double fitness, double rmse, int itr) {
                     return new ICPConvergenceCriteria(fitness, rmse, itr);
                 }),
                 "relative_fitness"_a = 1e-6, "relative_rmse"_a = 1e-6,
                 "max_iteration"_a = 30)
            .def_readwrite(
                    "relative_fitness",
                    &ICPConvergenceCriteria::relative_fitness_,
                    "If relative change (difference) of fitness score is lower "
                    "than ``relative_fitness``, the iteration stops.")
            .def_readwrite(
                    "relative_rmse", &ICPConvergenceCriteria::relative_rmse_,
                    "If relative change (difference) of inliner RMSE score is "
                    "lower than ``relative_rmse``, the iteration stops.")
            .def_readwrite("max_iteration",
                           &ICPConvergenceCriteria::max_iteration_,
                           "Maximum iteration before iteration stops.")
            .def("__repr__", [](const ICPConvergenceCriteria &c) {
                return fmt::format(
                        "ICPConvergenceCriteria("
                        "relative_fitness={:e}, "
                        "relative_rmse={:e}, "
                        "max_iteration={:d})",
                        c.relative_fitness_, c.relative_rmse_,
                        c.max_iteration_);
            });

    // open3d.registration.RANSACConvergenceCriteria
    auto ransac_criteria = static_cast<py::class_<RANSACConvergenceCriteria>>(
            m_registration.attr("RANSACConvergenceCriteria"));
    py::detail::bind_copy_functions<RANSACConvergenceCriteria>(ransac_criteria);
    ransac_criteria
            .def(py::init([](int max_iteration, double confidence) {
                     return new RANSACConvergenceCriteria(max_iteration,
                                                          confidence);
                 }),
                 "max_iteration"_a = 100000, "confidence"_a = 0.999)
            .def_readwrite("max_iteration",
                           &RANSACConvergenceCriteria::max_iteration_,
                           "Maximum iteration before iteration stops.")
            .def_readwrite(
                    "confidence", &RANSACConvergenceCriteria::confidence_,
                    "Desired probability of success. Used for estimating early "
                    "termination. Use 1.0 to avoid early termination.")
            .def("__repr__", [](const RANSACConvergenceCriteria &c) {
                return fmt::format(
                        "RANSACConvergenceCriteria("
                        "max_iteration={:d}, "
                        "confidence={:e})",
                        c.max_iteration_, c.confidence_);
            });

    // open3d.registration.TransformationEstimation
    auto te = static_cast<
            py::class_<TransformationEstimation,
                       PyTransformationEstimation<TransformationEstimation>>>(
            m_registration.attr("TransformationEstimation"));
    te.def("compute_rmse", &TransformationEstimation::ComputeRMSE, "source"_a,
           "target"_a, "corres"_a,
           "Compute RMSE between source and target points cloud given "
           "correspondences.");
    te.def("compute_transformation",
           &TransformationEstimation::ComputeTransformation, "source"_a,
           "target"_a, "corres"_a,
           "Compute transformation from source to target point cloud given "
           "correspondences.");
    docstring::ClassMethodDocInject(
            m_registration, "TransformationEstimation", "compute_rmse",
            {{"source", "Source point cloud."},
             {"target", "Target point cloud."},
             {"corres",
              "Correspondence set between source and target point cloud."}});
    docstring::ClassMethodDocInject(
            m_registration, "TransformationEstimation",
            "compute_transformation",
            {{"source", "Source point cloud."},
             {"target", "Target point cloud."},
             {"corres",
              "Correspondence set between source and target point cloud."}});

    // open3d.registration.TransformationEstimationPointToPoint:
    // TransformationEstimation
    auto te_p2p = static_cast<py::class_<
            TransformationEstimationPointToPoint,
            PyTransformationEstimation<TransformationEstimationPointToPoint>,
            TransformationEstimation>>(
            m_registration.attr("TransformationEstimationPointToPoint"));
    py::detail::bind_copy_functions<TransformationEstimationPointToPoint>(
            te_p2p);
    te_p2p.def(py::init([](bool with_scaling) {
                   return new TransformationEstimationPointToPoint(
                           with_scaling);
               }),
               "with_scaling"_a = false)
            .def("__repr__",
                 [](const TransformationEstimationPointToPoint &te) {
                     return fmt::format(
                             "TransformationEstimationPointToPoint("
                             "with_scaling={})",
                             te.with_scaling_ ? "True" : "False");
                 })
            .def_readwrite(
                    "with_scaling",
                    &TransformationEstimationPointToPoint::with_scaling_,
                    R"(Set to ``True`` to estimate scaling, ``False`` to force
scaling to be ``1``.

The homogeneous transformation is given by

:math:`T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}`

Sets :math:`c = 1` if ``with_scaling`` is ``False``.
)");

    // open3d.registration.TransformationEstimationPointToPlane:
    // TransformationEstimation
    auto te_p2l = static_cast<py::class_<
            TransformationEstimationPointToPlane,
            PyTransformationEstimation<TransformationEstimationPointToPlane>,
            TransformationEstimation>>(
            m_registration.attr("TransformationEstimationPointToPlane"));
    py::detail::bind_default_constructor<TransformationEstimationPointToPlane>(
            te_p2l);
    py::detail::bind_copy_functions<TransformationEstimationPointToPlane>(
            te_p2l);
    te_p2l.def(py::init([](std::shared_ptr<RobustKernel> kernel) {
                   return new TransformationEstimationPointToPlane(
                           std::move(kernel));
               }),
               "kernel"_a)
            .def("__repr__",
                 [](const TransformationEstimationPointToPlane &te) {
                     return std::string("TransformationEstimationPointToPlane");
                 })
            .def_readwrite("kernel",
                           &TransformationEstimationPointToPlane::kernel_,
                           "Robust Kernel used in the Optimization");

    // open3d.registration.TransformationEstimationForColoredICP :
    auto te_col = static_cast<py::class_<
            TransformationEstimationForColoredICP,
            PyTransformationEstimation<TransformationEstimationForColoredICP>,
            TransformationEstimation>>(
            m_registration.attr("TransformationEstimationForColoredICP"));
    py::detail::bind_default_constructor<TransformationEstimationForColoredICP>(
            te_col);
    py::detail::bind_copy_functions<TransformationEstimationForColoredICP>(
            te_col);
    te_col.def(py::init([](double lambda_geometric,
                           std::shared_ptr<RobustKernel> kernel) {
                   return new TransformationEstimationForColoredICP(
                           lambda_geometric, std::move(kernel));
               }),
               "lambda_geometric"_a, "kernel"_a)
            .def(py::init([](double lambda_geometric) {
                     return new TransformationEstimationForColoredICP(
                             lambda_geometric);
                 }),
                 "lambda_geometric"_a)
            .def(py::init([](std::shared_ptr<RobustKernel> kernel) {
                     auto te = TransformationEstimationForColoredICP();
                     te.kernel_ = std::move(kernel);
                     return te;
                 }),
                 "kernel"_a)
            .def("__repr__",
                 [](const TransformationEstimationForColoredICP &te) {
                     // This is missing kernel, but getting kernel name on C++
                     // is hard
                     return fmt::format(
                             "TransformationEstimationForColoredICP("
                             "lambda_geometric={})",
                             te.lambda_geometric_);
                 })
            .def_readwrite(
                    "lambda_geometric",
                    &TransformationEstimationForColoredICP::lambda_geometric_,
                    "lambda_geometric")
            .def_readwrite("kernel",
                           &TransformationEstimationForColoredICP::kernel_,
                           "Robust Kernel used in the Optimization");

    // open3d.registration.TransformationEstimationForGeneralizedICP:
    // TransformationEstimation
    auto te_gicp = static_cast<
            py::class_<TransformationEstimationForGeneralizedICP,
                       PyTransformationEstimation<
                               TransformationEstimationForGeneralizedICP>,
                       TransformationEstimation>>(
            m_registration.attr("TransformationEstimationForGeneralizedICP"));
    py::detail::bind_default_constructor<
            TransformationEstimationForGeneralizedICP>(te_gicp);
    py::detail::bind_copy_functions<TransformationEstimationForGeneralizedICP>(
            te_gicp);
    te_gicp.def(py::init([](double epsilon,
                            std::shared_ptr<RobustKernel> kernel) {
                    return new TransformationEstimationForGeneralizedICP(
                            epsilon, std::move(kernel));
                }),
                "epsilon"_a, "kernel"_a)
            .def(py::init([](double epsilon) {
                     return new TransformationEstimationForGeneralizedICP(
                             epsilon);
                 }),
                 "epsilon"_a)
            .def(py::init([](std::shared_ptr<RobustKernel> kernel) {
                     auto te = TransformationEstimationForGeneralizedICP();
                     te.kernel_ = std::move(kernel);
                     return te;
                 }),
                 "kernel"_a)
            .def("__repr__",
                 [](const TransformationEstimationForGeneralizedICP &te) {
                     return fmt::format(
                             "TransformationEstimationForGeneralizedICP("
                             "epsilon={})",
                             te.epsilon_);
                 })
            .def_readwrite("epsilon",
                           &TransformationEstimationForGeneralizedICP::epsilon_,
                           "epsilon")
            .def_readwrite("kernel",
                           &TransformationEstimationForGeneralizedICP::kernel_,
                           "Robust Kernel used in the Optimization");

    // open3d.registration.CorrespondenceChecker
    auto cc = static_cast<
            py::class_<CorrespondenceChecker,
                       PyCorrespondenceChecker<CorrespondenceChecker>>>(
            m_registration.attr("CorrespondenceChecker"));
    cc.def("Check", &CorrespondenceChecker::Check, "source"_a, "target"_a,
           "corres"_a, "transformation"_a,
           "Function to check if two points can be aligned. The two input "
           "point clouds must have exact the same number of points.");
    cc.def_readwrite(
            "require_pointcloud_alignment_",
            &CorrespondenceChecker::require_pointcloud_alignment_,
            "Some checkers do not require point clouds to be aligned, e.g., "
            "the edge length checker. Some checkers do, e.g., the distance "
            "checker.");
    docstring::ClassMethodDocInject(
            m_registration, "CorrespondenceChecker", "Check",
            {{"source", "Source point cloud."},
             {"target", "Target point cloud."},
             {"corres",
              "Correspondence set between source and target point cloud."},
             {"transformation", "The estimated transformation (inplace)."}});

    // open3d.registration.CorrespondenceCheckerBasedOnEdgeLength:
    // CorrespondenceChecker
    auto cc_el = static_cast<py::class_<
            CorrespondenceCheckerBasedOnEdgeLength,
            PyCorrespondenceChecker<CorrespondenceCheckerBasedOnEdgeLength>,
            CorrespondenceChecker>>(
            m_registration.attr("CorrespondenceCheckerBasedOnEdgeLength"));
    py::detail::bind_copy_functions<CorrespondenceCheckerBasedOnEdgeLength>(
            cc_el);
    cc_el.def(py::init([](double similarity_threshold) {
                  return new CorrespondenceCheckerBasedOnEdgeLength(
                          similarity_threshold);
              }),
              "similarity_threshold"_a = 0.9)
            .def("__repr__",
                 [](const CorrespondenceCheckerBasedOnEdgeLength &c) {
                     return fmt::format(
                             ""
                             "CorrespondenceCheckerBasedOnEdgeLength "
                             "with similarity_threshold={:f}",
                             c.similarity_threshold_);
                 })
            .def_readwrite(
                    "similarity_threshold",
                    &CorrespondenceCheckerBasedOnEdgeLength::
                            similarity_threshold_,
                    R"(float value between 0 (loose) and 1 (strict): For the
check to be true,

:math:`||\text{edge}_{\text{source}}|| > \text{similarity_threshold} \times ||\text{edge}_{\text{target}}||` and

:math:`||\text{edge}_{\text{target}}|| > \text{similarity_threshold} \times ||\text{edge}_{\text{source}}||`

must hold true for all edges.)");

    // open3d.registration.CorrespondenceCheckerBasedOnDistance:
    // CorrespondenceChecker
    auto cc_d = static_cast<py::class_<
            CorrespondenceCheckerBasedOnDistance,
            PyCorrespondenceChecker<CorrespondenceCheckerBasedOnDistance>,
            CorrespondenceChecker>>(
            m_registration.attr("CorrespondenceCheckerBasedOnDistance"));
    py::detail::bind_copy_functions<CorrespondenceCheckerBasedOnDistance>(cc_d);
    cc_d.def(py::init([](double distance_threshold) {
                 return new CorrespondenceCheckerBasedOnDistance(
                         distance_threshold);
             }),
             "distance_threshold"_a)
            .def("__repr__",
                 [](const CorrespondenceCheckerBasedOnDistance &c) {
                     return fmt::format(
                             ""
                             "CorrespondenceCheckerBasedOnDistance with "
                             "distance_threshold={:f}",
                             c.distance_threshold_);
                 })
            .def_readwrite(
                    "distance_threshold",
                    &CorrespondenceCheckerBasedOnDistance::distance_threshold_,
                    "Distance threshold for the check.");

    // open3d.registration.CorrespondenceCheckerBasedOnNormal:
    // CorrespondenceChecker
    auto cc_n = static_cast<py::class_<
            CorrespondenceCheckerBasedOnNormal,
            PyCorrespondenceChecker<CorrespondenceCheckerBasedOnNormal>,
            CorrespondenceChecker>>(
            m_registration.attr("CorrespondenceCheckerBasedOnNormal"));
    py::detail::bind_copy_functions<CorrespondenceCheckerBasedOnNormal>(cc_n);
    cc_n.def(py::init([](double normal_angle_threshold) {
                 return new CorrespondenceCheckerBasedOnNormal(
                         normal_angle_threshold);
             }),
             "normal_angle_threshold"_a)
            .def("__repr__",
                 [](const CorrespondenceCheckerBasedOnNormal &c) {
                     return fmt::format(
                             ""
                             "CorrespondenceCheckerBasedOnNormal with "
                             "normal_threshold={:f}",
                             c.normal_angle_threshold_);
                 })
            .def_readwrite("normal_angle_threshold",
                           &CorrespondenceCheckerBasedOnNormal::
                                   normal_angle_threshold_,
                           "Radian value for angle threshold.");

    // open3d.registration.FastGlobalRegistrationOption:
    auto fgr_option = static_cast<py::class_<FastGlobalRegistrationOption>>(
            m_registration.attr("FastGlobalRegistrationOption"));
    py::detail::bind_copy_functions<FastGlobalRegistrationOption>(fgr_option);
    fgr_option
            .def(py::init([](double division_factor, bool use_absolute_scale,
                             bool decrease_mu,
                             double maximum_correspondence_distance,
                             int iteration_number, double tuple_scale,
                             int maximum_tuple_count, bool tuple_test) {
                     return new FastGlobalRegistrationOption(
                             division_factor, use_absolute_scale, decrease_mu,
                             maximum_correspondence_distance, iteration_number,
                             tuple_scale, maximum_tuple_count, tuple_test);
                 }),
                 "division_factor"_a = 1.4, "use_absolute_scale"_a = false,
                 "decrease_mu"_a = false,
                 "maximum_correspondence_distance"_a = 0.025,
                 "iteration_number"_a = 64, "tuple_scale"_a = 0.95,
                 "maximum_tuple_count"_a = 1000, "tuple_test"_a = true)
            .def_readwrite(
                    "division_factor",
                    &FastGlobalRegistrationOption::division_factor_,
                    "float: Division factor used for graduated non-convexity.")
            .def_readwrite(
                    "use_absolute_scale",
                    &FastGlobalRegistrationOption::use_absolute_scale_,
                    "bool: Measure distance in absolute scale (1) or in scale "
                    "relative to the diameter of the model (0).")
            .def_readwrite("decrease_mu",
                           &FastGlobalRegistrationOption::decrease_mu_,
                           "bool: Set to ``True`` to decrease scale mu by "
                           "``division_factor`` for graduated non-convexity.")
            .def_readwrite("maximum_correspondence_distance",
                           &FastGlobalRegistrationOption::
                                   maximum_correspondence_distance_,
                           "float: Maximum correspondence distance.")
            .def_readwrite("iteration_number",
                           &FastGlobalRegistrationOption::iteration_number_,
                           "int: Maximum number of iterations.")
            .def_readwrite(
                    "tuple_scale", &FastGlobalRegistrationOption::tuple_scale_,
                    "float: Similarity measure used for tuples of feature "
                    "points.")
            .def_readwrite("maximum_tuple_count",
                           &FastGlobalRegistrationOption::maximum_tuple_count_,
                           "float: Maximum tuple numbers.")
            .def_readwrite(
                    "tuple_test", &FastGlobalRegistrationOption::tuple_test_,
                    "bool: Set to `true` to perform geometric compatibility "
                    "tests on initial set of correspondences.")
            .def("__repr__", [](const FastGlobalRegistrationOption &c) {
                return fmt::format(
                        "FastGlobalRegistrationOption("
                        "\ndivision_factor={},"
                        "\nuse_absolute_scale={},"
                        "\ndecrease_mu={},"
                        "\nmaximum_correspondence_distance={},"
                        "\niteration_number={},"
                        "\ntuple_scale={},"
                        "\nmaximum_tuple_count={},"
                        "\ntuple_test={},"
                        "\n)",
                        c.division_factor_, c.use_absolute_scale_,
                        c.decrease_mu_, c.maximum_correspondence_distance_,
                        c.iteration_number_, c.tuple_scale_,
                        c.maximum_tuple_count_, c.tuple_test_);
            });

    // open3d.registration.RegistrationResult
    auto registration_result = static_cast<py::class_<RegistrationResult>>(
            m_registration.attr("RegistrationResult"));
    py::detail::bind_default_constructor<RegistrationResult>(
            registration_result);
    py::detail::bind_copy_functions<RegistrationResult>(registration_result);
    registration_result
            .def_readwrite("transformation",
                           &RegistrationResult::transformation_,
                           "``4 x 4`` float64 numpy array: The estimated "
                           "transformation matrix.")
            .def_readwrite(
                    "correspondence_set",
                    &RegistrationResult::correspondence_set_,
                    "``n x 2`` int numpy array: Correspondence set between "
                    "source and target point cloud.")
            .def_readwrite("inlier_rmse", &RegistrationResult::inlier_rmse_,
                           "float: RMSE of all inlier correspondences. Lower "
                           "is better.")
            .def_readwrite(
                    "fitness", &RegistrationResult::fitness_,
                    "float: The overlapping area (# of inlier correspondences "
                    "/ # of points in source). Higher is better.")
            .def("__repr__", [](const RegistrationResult &rr) {
                return fmt::format(
                        "RegistrationResult with "
                        "fitness={:e}"
                        ", inlier_rmse={:e}"
                        ", and correspondence_set size of {:d}"
                        "\nAccess transformation to get result.",
                        rr.fitness_, rr.inlier_rmse_,
                        rr.correspondence_set_.size());
            });
    // Registration functions have similar arguments, sharing arg docstrings
    static const std::unordered_map<std::string, std::string>
            map_shared_argument_docstrings = {
                    {"checkers",
                     "Vector of Checker class to check if two point "
                     "clouds can be aligned. One of "
                     "(``CorrespondenceCheckerBasedOnEdgeLength``, "
                     "``CorrespondenceCheckerBasedOnDistance``, "
                     "``CorrespondenceCheckerBasedOnNormal``)"},
                    {"confidence",
                     "Desired probability of success for RANSAC. Used for "
                     "estimating early termination by k = log(1 - "
                     "confidence)/log(1 - inlier_ratio^{ransac_n}."},
                    {"corres",
                     "o3d.utility.Vector2iVector that stores indices of "
                     "corresponding point or feature arrays."},
                    {"criteria", "Convergence criteria"},
                    {"estimation_method",
                     "Estimation method. One of "
                     "(``TransformationEstimationPointToPoint``, "
                     "``TransformationEstimationPointToPlane``, "
                     "``TransformationEstimationForGeneralizedICP``, "
                     "``TransformationEstimationForColoredICP``)"},
                    {"init", "Initial transformation estimation"},
                    {"lambda_geometric", "lambda_geometric value"},
                    {"epsilon", "epsilon value"},
                    {"kernel", "Robust Kernel used in the Optimization"},
                    {"max_correspondence_distance",
                     "Maximum correspondence points-pair distance."},
                    {"mutual_filter",
                     "Enables mutual filter such that the correspondence of "
                     "the "
                     "source point's correspondence is itself."},
                    {"option", "Registration option"},
                    {"ransac_n",
                     "Fit ransac with ``ransac_n`` correspondences"},
                    {"source_feature", "Source point cloud feature."},
                    {"source", "The source point cloud."},
                    {"target_feature", "Target point cloud feature."},
                    {"target", "The target point cloud."},
                    {"transformation",
                     "The 4x4 transformation matrix to transform ``source`` to "
                     "``target``"}};
    m_registration.def(
            "evaluate_registration", &EvaluateRegistration,
            py::call_guard<py::gil_scoped_release>(),
            "Function for evaluating registration between point clouds",
            "source"_a, "target"_a, "max_correspondence_distance"_a,
            "transformation"_a = Eigen::Matrix4d::Identity());
    docstring::FunctionDocInject(m_registration, "evaluate_registration",
                                 map_shared_argument_docstrings);

    m_registration.def(
            "registration_icp", &RegistrationICP,
            py::call_guard<py::gil_scoped_release>(),
            "Function for ICP registration", "source"_a, "target"_a,
            "max_correspondence_distance"_a,
            "init"_a = Eigen::Matrix4d::Identity(),
            "estimation_method"_a = TransformationEstimationPointToPoint(false),
            "criteria"_a = ICPConvergenceCriteria());
    docstring::FunctionDocInject(m_registration, "registration_icp",
                                 map_shared_argument_docstrings);

    m_registration.def("registration_colored_icp", &RegistrationColoredICP,
                       py::call_guard<py::gil_scoped_release>(),
                       "Function for Colored ICP registration", "source"_a,
                       "target"_a, "max_correspondence_distance"_a,
                       "init"_a = Eigen::Matrix4d::Identity(),
                       "estimation_method"_a =
                               TransformationEstimationForColoredICP(0.968),
                       "criteria"_a = ICPConvergenceCriteria());
    docstring::FunctionDocInject(m_registration, "registration_colored_icp",
                                 map_shared_argument_docstrings);

    m_registration.def("registration_generalized_icp",
                       &RegistrationGeneralizedICP,
                       py::call_guard<py::gil_scoped_release>(),
                       "Function for Generalized ICP registration", "source"_a,
                       "target"_a, "max_correspondence_distance"_a,
                       "init"_a = Eigen::Matrix4d::Identity(),
                       "estimation_method"_a =
                               TransformationEstimationForGeneralizedICP(1e-3),
                       "criteria"_a = ICPConvergenceCriteria());
    docstring::FunctionDocInject(m_registration, "registration_generalized_icp",
                                 map_shared_argument_docstrings);

    m_registration.def(
            "registration_ransac_based_on_correspondence",
            &RegistrationRANSACBasedOnCorrespondence,
            py::call_guard<py::gil_scoped_release>(),
            "Function for global RANSAC registration based on a set of "
            "correspondences",
            "source"_a, "target"_a, "corres"_a, "max_correspondence_distance"_a,
            "estimation_method"_a = TransformationEstimationPointToPoint(false),
            "ransac_n"_a = 3,
            "checkers"_a = std::vector<
                    std::reference_wrapper<const CorrespondenceChecker>>(),
            "criteria"_a = RANSACConvergenceCriteria(100000, 0.999));
    docstring::FunctionDocInject(m_registration,
                                 "registration_ransac_based_on_correspondence",
                                 map_shared_argument_docstrings);

    m_registration.def(
            "registration_ransac_based_on_feature_matching",
            &RegistrationRANSACBasedOnFeatureMatching,
            py::call_guard<py::gil_scoped_release>(),
            "Function for global RANSAC registration based on feature matching",
            "source"_a, "target"_a, "source_feature"_a, "target_feature"_a,
            "mutual_filter"_a, "max_correspondence_distance"_a,
            "estimation_method"_a = TransformationEstimationPointToPoint(false),
            "ransac_n"_a = 3,
            "checkers"_a = std::vector<
                    std::reference_wrapper<const CorrespondenceChecker>>(),
            "criteria"_a = RANSACConvergenceCriteria(100000, 0.999));
    docstring::FunctionDocInject(
            m_registration, "registration_ransac_based_on_feature_matching",
            map_shared_argument_docstrings);

    m_registration.def(
            "registration_fgr_based_on_correspondence",
            &FastGlobalRegistrationBasedOnCorrespondence,
            py::call_guard<py::gil_scoped_release>(),
            "Function for fast global registration based on a set of "
            "correspondences",
            "source"_a, "target"_a, "corres"_a,
            "option"_a = FastGlobalRegistrationOption());
    docstring::FunctionDocInject(m_registration,
                                 "registration_fgr_based_on_correspondence",
                                 map_shared_argument_docstrings);

    m_registration.def(
            "registration_fgr_based_on_feature_matching",
            &FastGlobalRegistrationBasedOnFeatureMatching,
            py::call_guard<py::gil_scoped_release>(),
            "Function for fast global registration based on feature matching",
            "source"_a, "target"_a, "source_feature"_a, "target_feature"_a,
            "option"_a = FastGlobalRegistrationOption());
    docstring::FunctionDocInject(m_registration,
                                 "registration_fgr_based_on_feature_matching",
                                 map_shared_argument_docstrings);

    m_registration.def(
            "get_information_matrix_from_point_clouds",
            &GetInformationMatrixFromPointClouds,
            py::call_guard<py::gil_scoped_release>(),
            "Function for computing information matrix from transformation "
            "matrix",
            "source"_a, "target"_a, "max_correspondence_distance"_a,
            "transformation"_a);
    docstring::FunctionDocInject(m_registration,
                                 "get_information_matrix_from_point_clouds",
                                 map_shared_argument_docstrings);
    pybind_feature_definitions(m_registration);
    pybind_global_optimization_definitions(m_registration);
    pybind_robust_kernels_definitions(m_registration);
}

}  // namespace registration
}  // namespace pipelines
}  // namespace open3d