1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
// @author Ignacio Vizzo [ivizzo@uni-bonn.de]
//
// Copyright (c) 2020 Ignacio Vizzo, Cyrill Stachniss, University of Bonn.
// ----------------------------------------------------------------------------
#include <memory>
#include "open3d/pipelines/registration/RobustKernel.h"
#include "open3d/utility/Logging.h"
#include "pybind/docstring.h"
#include "pybind/open3d_pybind.h"
#include "pybind/pipelines/registration/registration.h"
namespace open3d {
namespace pipelines {
namespace registration {
template <class RobustKernelBase = RobustKernel>
class PyRobustKernelT : public RobustKernelBase {
public:
using RobustKernelBase::RobustKernelBase;
double Weight(double residual) const override {
PYBIND11_OVERLOAD_PURE(double, RobustKernelBase, residual);
}
};
// Type aliases to improve readability
using PyRobustKernel = PyRobustKernelT<RobustKernel>;
using PyL2Loss = PyRobustKernelT<L2Loss>;
using PyL1Loss = PyRobustKernelT<L1Loss>;
using PyHuberLoss = PyRobustKernelT<HuberLoss>;
using PyCauchyLoss = PyRobustKernelT<CauchyLoss>;
using PyGMLoss = PyRobustKernelT<GMLoss>;
using PyTukeyLoss = PyRobustKernelT<TukeyLoss>;
void pybind_robust_kernels_declarations(py::module &m_registration) {
py::class_<RobustKernel, std::shared_ptr<RobustKernel>, PyRobustKernel> rk(
m_registration, "RobustKernel",
R"(
Base class that models a robust kernel for outlier rejection. The virtual
function ``weight()`` must be implemented in derived classes.
The main idea of a robust loss is to downweight large residuals that are
assumed to be caused from outliers such that their influence on the solution
is reduced. This is achieved by optimizing:
.. math::
\def\argmin{\mathop{\rm argmin}}
\begin{equation}
x^{*} = \argmin_{x} \sum_{i=1}^{N} \rho({r_i(x)})
\end{equation}
:label: robust_loss
where :math:`\rho(r)` is also called the robust loss or kernel and
:math:`r_i(x)` is the residual.
Several robust kernels have been proposed to deal with different kinds of
outliers such as Huber, Cauchy, and others.
The optimization problem in :eq:`robust_loss` can be solved using the
iteratively reweighted least squares (IRLS) approach, which solves a sequence
of weighted least squares problems. We can see the relation between the least
squares optimization in stanad non-linear least squares and robust loss
optimization by comparing the respective gradients which go to zero at the
optimum (illustrated only for the :math:`i^\mathrm{th}` residual):
.. math::
\begin{eqnarray}
\frac{1}{2}\frac{\partial (w_i r^2_i(x))}{\partial{x}}
&=&
w_i r_i(x) \frac{\partial r_i(x)}{\partial{x}} \\
\label{eq:gradient_ls}
\frac{\partial(\rho(r_i(x)))}{\partial{x}}
&=&
\rho'(r_i(x)) \frac{\partial r_i(x)}{\partial{x}}.
\end{eqnarray}
By setting the weight :math:`w_i= \frac{1}{r_i(x)}\rho'(r_i(x))`, we
can solve the robust loss optimization problem by using the existing techniques
for weighted least-squares. This scheme allows standard solvers using
Gauss-Newton and Levenberg-Marquardt algorithms to optimize for robust losses
and is the one implemented in Open3D.
Then we minimize the objective function using Gauss-Newton and determine
increments by iteratively solving:
.. math::
\newcommand{\mat}[1]{\mathbf{#1}}
\newcommand{\veca}[1]{\vec{#1}}
\renewcommand{\vec}[1]{\mathbf{#1}}
\begin{align}
\left(\mat{J}^\top \mat{W} \mat{J}\right)^{-1}\mat{J}^\top\mat{W}\vec{r},
\end{align}
where :math:`\mat{W} \in \mathbb{R}^{n\times n}` is a diagonal matrix containing
weights :math:`w_i` for each residual :math:`r_i`
The different loss functions will only impact in the weight for each residual
during the optimization step.
Therefore, the only impact of the choice on the kernel is through its first
order derivate.
The kernels implemented so far, and the notation has been inspired by the
publication: **"Analysis of Robust Functions for Registration Algorithms"**, by
Philippe Babin et al.
For more information please also see: **"Adaptive Robust Kernels for
Non-Linear Least Squares Problems"**, by Nived Chebrolu et al.
)");
py::class_<L2Loss, std::shared_ptr<L2Loss>, PyL2Loss, RobustKernel> l2_loss(
m_registration, "L2Loss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is given by:
.. math:: \rho(r) = \frac{r^2}{2}
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math:: w(r) = 1
)");
py::class_<L1Loss, std::shared_ptr<L1Loss>, PyL1Loss, RobustKernel> l1_loss(
m_registration, "L1Loss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is given by:
.. math:: \rho(r) = |r|
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math:: w(r) = \frac{1}{|r|}
)");
py::class_<HuberLoss, std::shared_ptr<HuberLoss>, PyHuberLoss, RobustKernel>
h_loss(m_registration, "HuberLoss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:
.. math::
\begin{equation}
\rho(r)=
\begin{cases}
\frac{r^{2}}{2}, & |r| \leq k.\\
k(|r|-k / 2), & \text{otherwise}.
\end{cases}
\end{equation}
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math::
\begin{equation}
w(r)=
\begin{cases}
1, & |r| \leq k. \\
\frac{k}{|r|} , & \text{otherwise}.
\end{cases}
\end{equation}
)");
py::class_<CauchyLoss, std::shared_ptr<CauchyLoss>, PyCauchyLoss,
RobustKernel>
c_loss(m_registration, "CauchyLoss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:
.. math::
\begin{equation}
\rho(r)=
\frac{k^2}{2} \log\left(1 + \left(\frac{r}{k}\right)^2\right)
\end{equation}
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math::
\begin{equation}
w(r)=
\frac{1}{1 + \left(\frac{r}{k}\right)^2}
\end{equation}
)");
py::class_<GMLoss, std::shared_ptr<GMLoss>, PyGMLoss, RobustKernel> gm_loss(
m_registration, "GMLoss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:
.. math::
\begin{equation}
\rho(r)=
\frac{r^2/ 2}{k + r^2}
\end{equation}
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math::
\begin{equation}
w(r)=
\frac{k}{\left(k + r^2\right)^2}
\end{equation}
)");
py::class_<TukeyLoss, std::shared_ptr<TukeyLoss>, PyTukeyLoss, RobustKernel>
t_loss(m_registration, "TukeyLoss",
R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:
.. math::
\begin{equation}
\rho(r)=
\begin{cases}
\frac{k^2\left[1-\left(1-\left(\frac{e}{k}\right)^2\right)^3\right]}{2}, & |r| \leq k. \\
\frac{k^2}{2}, & \text{otherwise}.
\end{cases}
\end{equation}
The weight :math:`w(r)` for a given residual ``r`` is given by:
.. math::
\begin{equation}
w(r)=
\begin{cases}
\left(1 - \left(\frac{r}{k}\right)^2\right)^2, & |r| \leq k. \\
0 , & \text{otherwise}.
\end{cases}
\end{equation}
)");
}
void pybind_robust_kernels_definitions(py::module &m_registration) {
// open3d.registration.RobustKernel
auto rk =
static_cast<py::class_<RobustKernel, std::shared_ptr<RobustKernel>,
PyRobustKernel>>(
m_registration.attr("RobustKernel"));
rk.def("weight", &RobustKernel::Weight, "residual"_a,
"Obtain the weight for the given residual according to the "
"robust kernel model.");
docstring::ClassMethodDocInject(
m_registration, "RobustKernel", "weight",
{{"residual", "value obtained during the optimization problem"}});
// open3d.registration.L2Loss
auto l2_loss = static_cast<py::class_<L2Loss, std::shared_ptr<L2Loss>,
PyL2Loss, RobustKernel>>(
m_registration.attr("L2Loss"));
py::detail::bind_default_constructor<L2Loss>(l2_loss);
py::detail::bind_copy_functions<L2Loss>(l2_loss);
l2_loss.def("__repr__", [](const L2Loss &rk) {
(void)rk;
return "RobustKernel::L2Loss";
});
// open3d.registration.L1Loss:RobustKernel
auto l1_loss = static_cast<py::class_<L1Loss, std::shared_ptr<L1Loss>,
PyL1Loss, RobustKernel>>(
m_registration.attr("L1Loss"));
py::detail::bind_default_constructor<L1Loss>(l1_loss);
py::detail::bind_copy_functions<L1Loss>(l1_loss);
l1_loss.def("__repr__", [](const L1Loss &rk) {
(void)rk;
return "RobustKernel::L1Loss";
});
// open3d.registration.HuberLoss
auto h_loss = static_cast<py::class_<HuberLoss, std::shared_ptr<HuberLoss>,
PyHuberLoss, RobustKernel>>(
m_registration.attr("HuberLoss"));
py::detail::bind_copy_functions<HuberLoss>(h_loss);
h_loss.def(py::init(
[](double k) { return std::make_shared<HuberLoss>(k); }),
"k"_a)
.def("__repr__",
[](const HuberLoss &rk) {
return std::string("RobustKernel::HuberLoss with k=") +
std::to_string(rk.k_);
})
.def_readwrite("k", &HuberLoss::k_, "Parameter of the loss");
// open3d.registration.CauchyLoss
auto c_loss =
static_cast<py::class_<CauchyLoss, std::shared_ptr<CauchyLoss>,
PyCauchyLoss, RobustKernel>>(
m_registration.attr("CauchyLoss"));
py::detail::bind_copy_functions<CauchyLoss>(c_loss);
c_loss.def(py::init([](double k) {
return std::make_shared<CauchyLoss>(k);
}),
"k"_a)
.def("__repr__",
[](const CauchyLoss &rk) {
return std::string("RobustKernel::CauchyLoss with k=") +
std::to_string(rk.k_);
})
.def_readwrite("k", &CauchyLoss::k_, "Parameter of the loss.");
// open3d.registration.GMLoss
auto gm_loss = static_cast<py::class_<GMLoss, std::shared_ptr<GMLoss>,
PyGMLoss, RobustKernel>>(
m_registration.attr("GMLoss"));
py::detail::bind_copy_functions<GMLoss>(gm_loss);
gm_loss.def(py::init([](double k) { return std::make_shared<GMLoss>(k); }),
"k"_a)
.def("__repr__",
[](const GMLoss &rk) {
return std::string("RobustKernel::GMLoss with k=") +
std::to_string(rk.k_);
})
.def_readwrite("k", &GMLoss::k_, "Parameter of the loss.");
// open3d.registration.TukeyLoss:RobustKernel
auto t_loss = static_cast<py::class_<TukeyLoss, std::shared_ptr<TukeyLoss>,
PyTukeyLoss, RobustKernel>>(
m_registration.attr("TukeyLoss"));
py::detail::bind_copy_functions<TukeyLoss>(t_loss);
t_loss.def(py::init(
[](double k) { return std::make_shared<TukeyLoss>(k); }),
"k"_a)
.def("__repr__",
[](const TukeyLoss &tk) {
return std::string("RobustKernel::TukeyLoss with k=") +
std::to_string(tk.k_);
})
.def_readwrite("k", &TukeyLoss::k_,
"``k`` Is a running constant for the loss.");
} // namespace pipelines
} // namespace registration
} // namespace pipelines
} // namespace open3d
|