File: robust_kernels.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (328 lines) | stat: -rw-r--r-- 12,166 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
// @author Ignacio Vizzo     [ivizzo@uni-bonn.de]
//
// Copyright (c) 2020 Ignacio Vizzo, Cyrill Stachniss, University of Bonn.
// ----------------------------------------------------------------------------

#include <memory>

#include "open3d/pipelines/registration/RobustKernel.h"
#include "open3d/utility/Logging.h"
#include "pybind/docstring.h"
#include "pybind/open3d_pybind.h"
#include "pybind/pipelines/registration/registration.h"

namespace open3d {
namespace pipelines {
namespace registration {

template <class RobustKernelBase = RobustKernel>
class PyRobustKernelT : public RobustKernelBase {
public:
    using RobustKernelBase::RobustKernelBase;
    double Weight(double residual) const override {
        PYBIND11_OVERLOAD_PURE(double, RobustKernelBase, residual);
    }
};

// Type aliases to improve readability
using PyRobustKernel = PyRobustKernelT<RobustKernel>;
using PyL2Loss = PyRobustKernelT<L2Loss>;
using PyL1Loss = PyRobustKernelT<L1Loss>;
using PyHuberLoss = PyRobustKernelT<HuberLoss>;
using PyCauchyLoss = PyRobustKernelT<CauchyLoss>;
using PyGMLoss = PyRobustKernelT<GMLoss>;
using PyTukeyLoss = PyRobustKernelT<TukeyLoss>;

void pybind_robust_kernels_declarations(py::module &m_registration) {
    py::class_<RobustKernel, std::shared_ptr<RobustKernel>, PyRobustKernel> rk(
            m_registration, "RobustKernel",
            R"(
Base class that models a robust kernel for outlier rejection. The virtual
function ``weight()`` must be implemented in derived classes.

The main idea of a robust loss is to downweight large residuals that are
assumed to be caused from outliers such that their influence on the solution
is reduced. This is achieved by optimizing:

.. math::
  \def\argmin{\mathop{\rm argmin}}
  \begin{equation}
    x^{*} = \argmin_{x} \sum_{i=1}^{N} \rho({r_i(x)})
  \end{equation}
  :label: robust_loss

where :math:`\rho(r)` is also called the robust loss or kernel and
:math:`r_i(x)` is the residual.

Several robust kernels have been proposed to deal with different kinds of
outliers such as Huber, Cauchy, and others.

The optimization problem in :eq:`robust_loss` can be solved using the
iteratively reweighted least squares (IRLS) approach, which solves a sequence
of weighted least squares problems. We can see the relation between the least
squares optimization in stanad non-linear least squares and robust loss
optimization by comparing the respective gradients which go to zero at the
optimum (illustrated only for the :math:`i^\mathrm{th}` residual):

.. math::
  \begin{eqnarray}
    \frac{1}{2}\frac{\partial (w_i r^2_i(x))}{\partial{x}}
    &=&
    w_i r_i(x) \frac{\partial r_i(x)}{\partial{x}} \\
    \label{eq:gradient_ls}
    \frac{\partial(\rho(r_i(x)))}{\partial{x}}
    &=&
    \rho'(r_i(x)) \frac{\partial r_i(x)}{\partial{x}}.
  \end{eqnarray}

By setting the weight :math:`w_i= \frac{1}{r_i(x)}\rho'(r_i(x))`, we
can solve the robust loss optimization problem by using the existing techniques
for weighted least-squares. This scheme allows standard solvers using
Gauss-Newton and Levenberg-Marquardt algorithms to optimize for robust losses
and is the one implemented in Open3D.

Then we minimize the objective function using Gauss-Newton and determine
increments by iteratively solving:

.. math::
  \newcommand{\mat}[1]{\mathbf{#1}}
  \newcommand{\veca}[1]{\vec{#1}}
  \renewcommand{\vec}[1]{\mathbf{#1}}
  \begin{align}
   \left(\mat{J}^\top \mat{W} \mat{J}\right)^{-1}\mat{J}^\top\mat{W}\vec{r},
  \end{align}

where :math:`\mat{W} \in \mathbb{R}^{n\times n}` is a diagonal matrix containing
weights :math:`w_i` for each residual :math:`r_i`

The different loss functions will only impact in the weight for each residual
during the optimization step.
Therefore, the only impact of the choice on the kernel is through its first
order derivate.

The kernels implemented so far, and the notation has been inspired by the
publication: **"Analysis of Robust Functions for Registration Algorithms"**, by
Philippe Babin et al.

For more information please also see: **"Adaptive Robust Kernels for
Non-Linear Least Squares Problems"**, by Nived Chebrolu et al.
)");
    py::class_<L2Loss, std::shared_ptr<L2Loss>, PyL2Loss, RobustKernel> l2_loss(
            m_registration, "L2Loss",
            R"(
The loss :math:`\rho(r)` for a given residual ``r`` is given by:

.. math:: \rho(r) = \frac{r^2}{2}

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math:: w(r) = 1
)");
    py::class_<L1Loss, std::shared_ptr<L1Loss>, PyL1Loss, RobustKernel> l1_loss(
            m_registration, "L1Loss",
            R"(
The loss :math:`\rho(r)` for a given residual ``r`` is given by:

.. math:: \rho(r) = |r|

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math:: w(r) = \frac{1}{|r|}
)");
    py::class_<HuberLoss, std::shared_ptr<HuberLoss>, PyHuberLoss, RobustKernel>
            h_loss(m_registration, "HuberLoss",
                   R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:

.. math::
  \begin{equation}
    \rho(r)=
    \begin{cases}
      \frac{r^{2}}{2}, & |r| \leq k.\\
      k(|r|-k / 2), & \text{otherwise}.
    \end{cases}
  \end{equation}

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math::
  \begin{equation}
    w(r)=
    \begin{cases}
      1,              & |r| \leq k.       \\
      \frac{k}{|r|} , & \text{otherwise}.
    \end{cases}
  \end{equation}
)");
    py::class_<CauchyLoss, std::shared_ptr<CauchyLoss>, PyCauchyLoss,
               RobustKernel>
            c_loss(m_registration, "CauchyLoss",
                   R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:

.. math::
  \begin{equation}
    \rho(r)=
    \frac{k^2}{2} \log\left(1 + \left(\frac{r}{k}\right)^2\right)
  \end{equation}

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math::
  \begin{equation}
    w(r)=
    \frac{1}{1 + \left(\frac{r}{k}\right)^2}
  \end{equation}
)");
    py::class_<GMLoss, std::shared_ptr<GMLoss>, PyGMLoss, RobustKernel> gm_loss(
            m_registration, "GMLoss",
            R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:

.. math::
  \begin{equation}
    \rho(r)=
    \frac{r^2/ 2}{k + r^2}
  \end{equation}

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math::
  \begin{equation}
    w(r)=
    \frac{k}{\left(k + r^2\right)^2}
  \end{equation}
)");
    py::class_<TukeyLoss, std::shared_ptr<TukeyLoss>, PyTukeyLoss, RobustKernel>
            t_loss(m_registration, "TukeyLoss",
                   R"(
The loss :math:`\rho(r)` for a given residual ``r`` is:

.. math::
  \begin{equation}
    \rho(r)=
    \begin{cases}
      \frac{k^2\left[1-\left(1-\left(\frac{e}{k}\right)^2\right)^3\right]}{2}, & |r| \leq k.       \\
      \frac{k^2}{2},                                                           & \text{otherwise}.
    \end{cases}
  \end{equation}

The weight :math:`w(r)` for a given residual ``r`` is given by:

.. math::
  \begin{equation}
    w(r)=
    \begin{cases}
      \left(1 - \left(\frac{r}{k}\right)^2\right)^2, & |r| \leq k.       \\
      0 ,                                            & \text{otherwise}.
    \end{cases}
  \end{equation}
)");
}
void pybind_robust_kernels_definitions(py::module &m_registration) {
    // open3d.registration.RobustKernel
    auto rk =
            static_cast<py::class_<RobustKernel, std::shared_ptr<RobustKernel>,
                                   PyRobustKernel>>(
                    m_registration.attr("RobustKernel"));
    rk.def("weight", &RobustKernel::Weight, "residual"_a,
           "Obtain the weight for the given residual according to the "
           "robust kernel model.");
    docstring::ClassMethodDocInject(
            m_registration, "RobustKernel", "weight",
            {{"residual", "value obtained during the optimization problem"}});

    // open3d.registration.L2Loss
    auto l2_loss = static_cast<py::class_<L2Loss, std::shared_ptr<L2Loss>,
                                          PyL2Loss, RobustKernel>>(
            m_registration.attr("L2Loss"));
    py::detail::bind_default_constructor<L2Loss>(l2_loss);
    py::detail::bind_copy_functions<L2Loss>(l2_loss);
    l2_loss.def("__repr__", [](const L2Loss &rk) {
        (void)rk;
        return "RobustKernel::L2Loss";
    });

    // open3d.registration.L1Loss:RobustKernel
    auto l1_loss = static_cast<py::class_<L1Loss, std::shared_ptr<L1Loss>,
                                          PyL1Loss, RobustKernel>>(
            m_registration.attr("L1Loss"));
    py::detail::bind_default_constructor<L1Loss>(l1_loss);
    py::detail::bind_copy_functions<L1Loss>(l1_loss);
    l1_loss.def("__repr__", [](const L1Loss &rk) {
        (void)rk;
        return "RobustKernel::L1Loss";
    });

    // open3d.registration.HuberLoss
    auto h_loss = static_cast<py::class_<HuberLoss, std::shared_ptr<HuberLoss>,
                                         PyHuberLoss, RobustKernel>>(
            m_registration.attr("HuberLoss"));
    py::detail::bind_copy_functions<HuberLoss>(h_loss);
    h_loss.def(py::init(
                       [](double k) { return std::make_shared<HuberLoss>(k); }),
               "k"_a)
            .def("__repr__",
                 [](const HuberLoss &rk) {
                     return std::string("RobustKernel::HuberLoss with k=") +
                            std::to_string(rk.k_);
                 })
            .def_readwrite("k", &HuberLoss::k_, "Parameter of the loss");

    // open3d.registration.CauchyLoss
    auto c_loss =
            static_cast<py::class_<CauchyLoss, std::shared_ptr<CauchyLoss>,
                                   PyCauchyLoss, RobustKernel>>(
                    m_registration.attr("CauchyLoss"));
    py::detail::bind_copy_functions<CauchyLoss>(c_loss);
    c_loss.def(py::init([](double k) {
                   return std::make_shared<CauchyLoss>(k);
               }),
               "k"_a)
            .def("__repr__",
                 [](const CauchyLoss &rk) {
                     return std::string("RobustKernel::CauchyLoss with k=") +
                            std::to_string(rk.k_);
                 })
            .def_readwrite("k", &CauchyLoss::k_, "Parameter of the loss.");

    // open3d.registration.GMLoss
    auto gm_loss = static_cast<py::class_<GMLoss, std::shared_ptr<GMLoss>,
                                          PyGMLoss, RobustKernel>>(
            m_registration.attr("GMLoss"));
    py::detail::bind_copy_functions<GMLoss>(gm_loss);
    gm_loss.def(py::init([](double k) { return std::make_shared<GMLoss>(k); }),
                "k"_a)
            .def("__repr__",
                 [](const GMLoss &rk) {
                     return std::string("RobustKernel::GMLoss with k=") +
                            std::to_string(rk.k_);
                 })
            .def_readwrite("k", &GMLoss::k_, "Parameter of the loss.");

    // open3d.registration.TukeyLoss:RobustKernel
    auto t_loss = static_cast<py::class_<TukeyLoss, std::shared_ptr<TukeyLoss>,
                                         PyTukeyLoss, RobustKernel>>(
            m_registration.attr("TukeyLoss"));
    py::detail::bind_copy_functions<TukeyLoss>(t_loss);
    t_loss.def(py::init(
                       [](double k) { return std::make_shared<TukeyLoss>(k); }),
               "k"_a)
            .def("__repr__",
                 [](const TukeyLoss &tk) {
                     return std::string("RobustKernel::TukeyLoss with k=") +
                            std::to_string(tk.k_);
                 })
            .def_readwrite("k", &TukeyLoss::k_,
                           "``k`` Is a running constant for the loss.");
}  // namespace pipelines

}  // namespace registration
}  // namespace pipelines
}  // namespace open3d