File: image.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (369 lines) | stat: -rw-r--r-- 18,959 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "open3d/t/geometry/Image.h"

#include <string>
#include <unordered_map>

#include "open3d/core/CUDAUtils.h"
#include "open3d/t/geometry/RGBDImage.h"
#include "pybind/docstring.h"
#include "pybind/pybind_utils.h"
#include "pybind/t/geometry/geometry.h"

namespace open3d {
namespace t {
namespace geometry {

// Image functions have similar arguments, thus the arg docstrings may be shared
static const std::unordered_map<std::string, std::string>
        map_shared_argument_docstrings = {
                {"color", "The color image."},
                {"depth", "The depth image."},
                {"aligned",
                 "Are the two images aligned (same viewpoint and resolution)?"},
                {"image", "The Image object."},
                {"tensor",
                 "Tensor of the image. The tensor must be contiguous. The "
                 "tensor must be 2D (rows, cols) or 3D (rows, cols, "
                 "channels)."},
                {"rows",
                 "Number of rows of the image, i.e. image height. rows must be "
                 "non-negative."},
                {"cols",
                 "Number of columns of the image, i.e. image width. cols must "
                 "be non-negative."},
                {"channels",
                 "Number of channels of the image. E.g. for RGB image, "
                 "channels == 3; for grayscale image, channels == 1. channels "
                 "must be greater than 0."},
                {"dtype", "Data type of the image."},
                {"device", "Device where the image is stored."},
                {"scale",
                 "First multiply image pixel values with this factor. "
                 "This should be positive for unsigned dtypes."},
                {"offset", "Then add this factor to all image pixel values."},
                {"kernel_size", "Kernel size for filters and dilations."},
                {"value_sigma", "Standard deviation for the image content."},
                {"distance_sigma",
                 "Standard deviation for the image pixel positions."}};

void pybind_image_declarations(py::module &m) {
    py::class_<Image, PyGeometry<Image>, std::shared_ptr<Image>, Geometry>
            image(m, "Image", py::buffer_protocol(),
                  "The Image class stores image with customizable rols, cols, "
                  "channels, dtype and device.");
    py::enum_<Image::InterpType>(m, "InterpType", "Interpolation type.")
            .value("Nearest", Image::InterpType::Nearest)
            .value("Linear", Image::InterpType::Linear)
            .value("Cubic", Image::InterpType::Cubic)
            .value("Lanczos", Image::InterpType::Lanczos)
            .value("Super", Image::InterpType::Super)
            .export_values();
    py::class_<RGBDImage, PyGeometry<RGBDImage>, std::shared_ptr<RGBDImage>,
               Geometry>
            rgbd_image(
                    m, "RGBDImage",
                    "RGBDImage is a pair of color and depth images. For most "
                    "processing, the image pair should be aligned (same "
                    "viewpoint and  "
                    "resolution).");
}
void pybind_image_definitions(py::module &m) {
    auto image = static_cast<py::class_<Image, PyGeometry<Image>,
                                        std::shared_ptr<Image>, Geometry>>(
            m.attr("Image"));
    // Constructors
    image.def(py::init<int64_t, int64_t, int64_t, core::Dtype, core::Device>(),
              "Row-major storage is used, similar to OpenCV. Use (row, col, "
              "channel) indexing order for image creation and accessing. In "
              "general, (r, c, ch) are the preferred variable names for "
              "consistency, and avoid using width, height, u, v, x, y for "
              "coordinates.",
              "rows"_a = 0, "cols"_a = 0, "channels"_a = 1,
              "dtype"_a = core::Float32, "device"_a = core::Device("CPU:0"))
            .def(py::init<core::Tensor &>(),
                 "Construct from a tensor. The tensor won't be copied and "
                 "memory will be shared.",
                 "tensor"_a);
    docstring::ClassMethodDocInject(m, "Image", "__init__",
                                    map_shared_argument_docstrings);
    py::detail::bind_copy_functions<Image>(image);

    // Pickle support.
    image.def(py::pickle(
            [](const Image &image) {
                // __getstate__
                return py::make_tuple(image.AsTensor());
            },
            [](py::tuple t) {
                // __setstate__
                if (t.size() != 1) {
                    utility::LogError(
                            "Cannot unpickle Image! Expecting a tuple of size "
                            "1.");
                }
                return Image(t[0].cast<core::Tensor>());
            }));

    // Buffer protocol.
    image.def_buffer([](Image &I) -> py::buffer_info {
        if (!I.IsCPU()) {
            utility::LogError(
                    "Cannot convert image buffer since it's not on CPU. "
                    "Convert to CPU image by calling .cpu() first.");
        }
        core::SizeVector strides_in_bytes = I.AsTensor().GetStrides();
        const int64_t element_byte_size = I.GetDtype().ByteSize();
        for (size_t i = 0; i < strides_in_bytes.size(); i++) {
            strides_in_bytes[i] *= element_byte_size;
        }
        return py::buffer_info(I.GetDataPtr(), element_byte_size,
                               pybind_utils::DtypeToArrayFormat(I.GetDtype()),
                               I.AsTensor().NumDims(), I.AsTensor().GetShape(),
                               strides_in_bytes);
    });
    // Info.
    image.def_property_readonly("dtype", &Image::GetDtype,
                                "Get dtype of the image")
            .def_property_readonly("device", &Image::GetDevice,
                                   "Get the device of the image.")
            .def_property_readonly("rows", &Image::GetRows,
                                   "Get the number of rows of the image.")
            .def_property_readonly("columns", &Image::GetCols,
                                   "Get the number of columns of the image.")
            .def_property_readonly("channels", &Image::GetChannels,
                                   "Get the number of channels of the image.")
            // functions
            .def("clear", &Image::Clear, "Clear stored data.")
            .def("is_empty", &Image::IsEmpty, "Is any data stored?")
            .def("get_min_bound", &Image::GetMinBound,
                 "Compute min 2D coordinates for the data (always {0, 0}).")
            .def("get_max_bound", &Image::GetMaxBound,
                 "Compute max 2D coordinates for the data ({rows, cols}).")
            .def("linear_transform", &Image::LinearTransform,
                 "Function to linearly transform pixel intensities in place: "
                 "image = scale * image + offset.",
                 "scale"_a = 1.0, "offset"_a = 0.0)
            .def("dilate", &Image::Dilate,
                 "Return a new image after performing morphological dilation. "
                 "Supported datatypes are UInt8, UInt16 and Float32 with "
                 "{1, 3, 4} channels. An 8-connected neighborhood is used to "
                 "create the dilation mask.",
                 "kernel_size"_a = 3)
            .def("filter", &Image::Filter,
                 "Return a new image after filtering with the given kernel.",
                 "kernel"_a)
            .def("filter_gaussian", &Image::FilterGaussian,
                 "Return a new image after Gaussian filtering. "
                 "Possible kernel_size: odd numbers >= 3 are supported.",
                 "kernel_size"_a = 3, "sigma"_a = 1.0)
            .def("filter_bilateral", &Image::FilterBilateral,
                 "Return a new image after bilateral filtering."
                 "Note: CPU (IPP) and CUDA (NPP) versions are inconsistent: "
                 "CPU uses a round kernel (radius = floor(kernel_size / 2)), "
                 "while CUDA uses a square kernel (width = kernel_size). "
                 "Make sure to tune parameters accordingly.",
                 "kernel_size"_a = 3, "value_sigma"_a = 20.0,
                 "dist_sigma"_a = 10.0)
            .def("filter_sobel", &Image::FilterSobel,
                 "Return a pair of new gradient images (dx, dy) after Sobel "
                 "filtering. Possible kernel_size: 3 and 5.",
                 "kernel_size"_a = 3)
            .def("resize", &Image::Resize,
                 "Return a new image after resizing with specified "
                 "interpolation type. Downsample if sampling rate is < 1. "
                 "Upsample if sampling rate > 1. Aspect ratio is always "
                 "kept.",
                 "sampling_rate"_a = 0.5,
                 py::arg_v("interp_type", Image::InterpType::Nearest,
                           "open3d.t.geometry.InterpType.Nearest"))
            .def("pyrdown", &Image::PyrDown,
                 "Return a new downsampled image with pyramid downsampling "
                 "formed by a chained Gaussian filter (kernel_size = 5, sigma"
                 " = 1.0) and a resize (ratio = 0.5) operation.")
            .def("rgb_to_gray", &Image::RGBToGray,
                 "Converts a 3-channel RGB image to a new 1-channel Grayscale "
                 "image by I = 0.299 * R + 0.587 * G + 0.114 * B.")
            .def("__repr__", &Image::ToString);
    docstring::ClassMethodDocInject(m, "Image", "linear_transform",
                                    map_shared_argument_docstrings);

    // Depth utilities.
    image.def("clip_transform", &Image::ClipTransform,
              "Preprocess a image of shape (rows, cols, channels=1), typically"
              " used for a depth image. UInt16 and Float32 Dtypes supported. "
              "Each pixel will be transformed by\n"
              "x = x / scale\n"
              "x = x < min_value ? clip_fill : x\n"
              "x = x > max_value ? clip_fill : x\n"
              "Use INF, NAN or 0.0 (default) for clip_fill",
              "scale"_a, "min_value"_a, "max_value"_a, "clip_fill"_a = 0.0f);
    image.def("create_vertex_map", &Image::CreateVertexMap,
              "Create a vertex map of shape (rows, cols, channels=3) in Float32"
              " from an image of shape (rows, cols, channels=1) in Float32 "
              "using unprojection. The input depth is expected to be the output"
              " of clip_transform.",
              "intrinsics"_a, "invalid_fill"_a = 0.0f);
    image.def("create_normal_map", &Image::CreateNormalMap,
              "Create a normal map of shape (rows, cols, channels=3) in Float32"
              " from a vertex map of shape (rows, cols, channels=1) in Float32 "
              "using cross product of V(r, c+1)-V(r, c) and V(r+1, c)-V(r, c)"
              ". The input vertex map is expected to be the output of "
              "create_vertex_map. You may need to start with a filtered depth "
              " image (e.g. with filter_bilateral) to obtain good results.",
              "invalid_fill"_a = 0.0f);
    image.def(
            "colorize_depth", &Image::ColorizeDepth,
            "Colorize an input depth image (with Dtype UInt16 or Float32). The"
            " image values are divided by scale, then clamped within "
            "(min_value, max_value) and finally converted to a 3 channel UInt8"
            " RGB image using the Turbo colormap as a lookup table.",
            "scale"_a, "min_value"_a, "max_value"_a);

    // Device transfers.
    image.def("to",
              py::overload_cast<const core::Device &, bool>(&Image::To,
                                                            py::const_),
              "Transfer the Image to a specified device.  A new image is "
              "always created if copy is true, else it is avoided when the "
              "original image is already on the target device.",
              "device"_a, "copy"_a = false);
    image.def("clone", &Image::Clone,
              "Returns a copy of the Image on the same device.");
    image.def(
            "cpu",
            [](const Image &image) { return image.To(core::Device("CPU:0")); },
            "Transfer the image to CPU. If the image "
            "is already on CPU, no copy will be performed.");
    image.def(
            "cuda",
            [](const Image &image, int device_id) {
                return image.To(core::Device("CUDA", device_id));
            },
            "Transfer the image to a CUDA device. If the image is already "
            "on the specified CUDA device, no copy will be performed.",
            "device_id"_a = 0);

    // Conversion.
    image.def("to",
              py::overload_cast<core::Dtype, bool, utility::optional<double>,
                                double>(&Image::To, py::const_),
              "Returns an Image with the specified Dtype.", "dtype"_a,
              "copy"_a = false, "scale"_a = py::none(), "offset"_a = 0.0);
    docstring::ClassMethodDocInject(
            m, "Image", "to",
            {{"dtype", "The targeted dtype to convert to."},
             {"scale",
              "Optional scale value. This is 1./255 for UInt8 -> Float{32,64}, "
              "1./65535 for UInt16 -> Float{32,64} and 1 otherwise"},
             {"offset", "Optional shift value. Default 0."},
             {"copy",
              "If true, a new tensor is always created; if false, the copy is "
              "avoided when the original tensor already has the targeted "
              "dtype."}});
    image.def("to_legacy", &Image::ToLegacy, "Convert to legacy Image type.");
    image.def_static("from_legacy", &Image::FromLegacy, "image_legacy"_a,
                     "device"_a = core::Device("CPU:0"),
                     "Create a Image from a legacy Open3D Image.");
    image.def("as_tensor", &Image::AsTensor);

    docstring::ClassMethodDocInject(m, "Image", "get_min_bound");
    docstring::ClassMethodDocInject(m, "Image", "get_max_bound");
    docstring::ClassMethodDocInject(m, "Image", "clear");
    docstring::ClassMethodDocInject(m, "Image", "is_empty");
    docstring::ClassMethodDocInject(m, "Image", "to_legacy");
    auto rgbd_image =
            static_cast<py::class_<RGBDImage, PyGeometry<RGBDImage>,
                                   std::shared_ptr<RGBDImage>, Geometry>>(
                    m.attr("RGBDImage"));
    rgbd_image
            // Constructors.
            .def(py::init<>(), "Construct an empty RGBDImage.")
            .def(py::init<const Image &, const Image &, bool>(),
                 "Parameterized constructor", "color"_a, "depth"_a,
                 "aligned"_a = true)

            // Pickling support.
            .def(py::pickle(
                    [](const RGBDImage &rgbd) {
                        // __getstate__
                        return py::make_tuple(rgbd.color_, rgbd.depth_,
                                              rgbd.aligned_);
                    },
                    [](py::tuple t) {
                        // __setstate__
                        if (t.size() != 3) {
                            utility::LogError(
                                    "Cannot unpickle RGBDImage! Expecting a "
                                    "tuple of size 3.");
                        }

                        return RGBDImage(t[0].cast<Image>(), t[1].cast<Image>(),
                                         t[2].cast<bool>());
                    }))

            // Depth and color images.
            .def_readwrite("color", &RGBDImage::color_, "The color image.")
            .def_readwrite("depth", &RGBDImage::depth_, "The depth image.")
            .def_readwrite("aligned_", &RGBDImage::aligned_,
                           "Are the depth and color images aligned (same "
                           "viewpoint and resolution)?")
            // Functions.
            .def("clear", &RGBDImage::Clear, "Clear stored data.")
            .def("is_empty", &RGBDImage::IsEmpty, "Is any data stored?")
            .def("are_aligned", &RGBDImage::AreAligned,
                 "Are the depth and color images aligned (same viewpoint and "
                 "resolution)?")
            .def("get_min_bound", &RGBDImage::GetMinBound,
                 "Compute min 2D coordinates for the data (always {0, 0}).")
            .def("get_max_bound", &RGBDImage::GetMaxBound,
                 "Compute max 2D coordinates for the data.")
            // Device transfers.
            .def("to",
                 py::overload_cast<const core::Device &, bool>(&RGBDImage::To,
                                                               py::const_),
                 "Transfer the RGBDImage to a specified device.", "device"_a,
                 "copy"_a = false)
            .def("clone", &RGBDImage::Clone,
                 "Returns a copy of the RGBDImage on the same device.")
            .def(
                    "cpu",
                    [](const RGBDImage &rgbd_image) {
                        return rgbd_image.To(core::Device("CPU:0"));
                    },
                    "Transfer the RGBD image to CPU. If the RGBD image "
                    "is already on CPU, no copy will be performed.")
            .def(
                    "cuda",
                    [](const RGBDImage &rgbd_image, int device_id) {
                        return rgbd_image.To(core::Device("CUDA", device_id));
                    },
                    "Transfer the RGBD image to a CUDA device. If the RGBD "
                    "image is already "
                    "on the specified CUDA device, no copy will be performed.",
                    "device_id"_a = 0)

            // Conversion.
            .def("to_legacy", &RGBDImage::ToLegacy,
                 "Convert to legacy RGBDImage type.")
            // Description.
            .def("__repr__", &RGBDImage::ToString);

    docstring::ClassMethodDocInject(m, "RGBDImage", "get_min_bound");
    docstring::ClassMethodDocInject(m, "RGBDImage", "get_max_bound");
    docstring::ClassMethodDocInject(m, "RGBDImage", "clear");
    docstring::ClassMethodDocInject(m, "RGBDImage", "is_empty");
    docstring::ClassMethodDocInject(m, "RGBDImage", "to_legacy");
    docstring::ClassMethodDocInject(m, "RGBDImage", "__init__",
                                    map_shared_argument_docstrings);
}

}  // namespace geometry
}  // namespace t
}  // namespace open3d