1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/t/geometry/TensorMap.h"
#include "open3d/t/geometry/PointCloud.h"
#include "pybind/docstring.h"
#include "pybind/t/geometry/geometry.h"
namespace open3d {
namespace t {
namespace geometry {
// This is a copy of py::bind_map function, with `__delitem__` function
// removed. The same is defined in `pybind_tensormap` to use
// `TensorMap::Erase(key)`.
template <typename Map,
typename holder_type = std::unique_ptr<Map>,
typename... Args>
static py::class_<Map, holder_type> bind_tensor_map(py::handle scope,
const std::string &name,
Args &&... args) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
using Class_ = py::class_<Map, holder_type>;
// If either type is a non-module-local bound type then make the map binding
// non-local as well; otherwise (e.g. both types are either module-local or
// converting) the map will be module-local.
auto tinfo = py::detail::get_type_info(typeid(MappedType));
bool local = !tinfo || tinfo->module_local;
if (local) {
tinfo = py::detail::get_type_info(typeid(KeyType));
local = !tinfo || tinfo->module_local;
}
Class_ cl(scope, name.c_str(), pybind11::module_local(local),
std::forward<Args>(args)...);
cl.def(py::init<>());
// Register stream insertion operator (if possible)
py::detail::map_if_insertion_operator<Map, Class_>(cl, name);
cl.def(
"__bool__", [](const Map &m) -> bool { return !m.empty(); },
"Check whether the map is nonempty");
// Essential: keep list alive while iterator exists
cl.def(
"__iter__",
[](Map &m) { return py::make_key_iterator(m.begin(), m.end()); },
py::keep_alive<0, 1>()
);
// Essential: keep list alive while iterator exists
cl.def(
"items",
[](Map &m) { return py::make_iterator(m.begin(), m.end()); },
py::keep_alive<0, 1>());
cl.def(
"__getitem__",
[](Map &m, const KeyType &k) -> MappedType & {
auto it = m.find(k);
if (it == m.end())
throw py::key_error(
fmt::format("Key {} not found in TensorMap", k));
return it->second;
},
// py::return_value_policy::copy is used as the safest option.
// The goal is to make TensorMap works similarly as putting Tensors
// into a python dict, i.e., {"a": Tensor(xx), "b": Tensor(XX)}.
// Accessing a value in the map will return a shallow copy of the
// tensor that shares the same underlying memory.
//
// - automatic : works, different id
// - automatic_reference: works, different id
// - take_ownership : doesn't work, segfault
// - copy : works, different id
// - move : doesn't work, blob is null
// - reference : doesn't work, when a key is deleted, the
// alias becomes invalid
// - reference_internal : doesn't work, value in map overwritten
// when assigning to alias
py::return_value_policy::copy);
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) {
if (!TensorMap::GetReservedKeys().count(k)) {
m[k] = v;
} else {
throw py::key_error(
fmt::format("Cannot assign to reserved key \"{}\"", k));
}
});
cl.def("__contains__", [](Map &m, const KeyType &k) -> bool {
auto it = m.find(k);
if (it == m.end()) return false;
return true;
});
// Assignment provided only if the type is copyable
py::detail::map_assignment<Map, Class_>(cl);
// Deleted the "__delitem__" function.
// This will be implemented in `pybind_tensormap()`.
cl.def("__len__", [](const Map &m) -> size_t { return m.size(); });
return cl;
}
void pybind_tensormap_declarations(py::module &m) {
auto tm = bind_tensor_map<TensorMap>(
m, "TensorMap", "Map of String to Tensor with a primary key.");
}
void pybind_tensormap_definitions(py::module &m) {
// Bind to the generic dictionary interface such that it works the same as a
// regular dictionary in Python, except that types are enforced. Supported
// functions include `__bool__`, `__iter__`, `items`, `__getitem__`,
// `__contains__`, `__len__` and map assignment.
// The `__delitem__` function is removed from bind_map, in bind_tensor_map,
// and defined in this function, to use TensorMap::Erase, in order to
// protect users from deleting the `private_key`.
auto tm = static_cast<py::class_<TensorMap, std::unique_ptr<TensorMap>>>(
m.attr("TensorMap"));
tm.def("__delitem__",
[](TensorMap &m, const std::string &k) { return m.Erase(k); });
tm.def("erase",
[](TensorMap &m, const std::string &k) { return m.Erase(k); });
// Constructors.
tm.def(py::init<const std::string &>(), "primary_key"_a);
tm.def(py::init<const std::string &,
const std::unordered_map<std::string, core::Tensor> &>(),
"primary_key"_a, "map_keys_to_tensors"_a);
// Member functions. Some C++ functions are ignored since the
// functionalities are already covered in the generic dictionary interface.
tm.def_property_readonly("primary_key", &TensorMap::GetPrimaryKey);
tm.def("is_size_synchronized", &TensorMap::IsSizeSynchronized);
tm.def("assert_size_synchronized", &TensorMap::AssertSizeSynchronized);
// Pickle support.
tm.def(py::pickle(
[](const TensorMap &m) {
// __getstate__
std::unordered_map<std::string, core::Tensor> map;
for (const auto &kv : m) {
map[kv.first] = kv.second;
}
return py::make_tuple(m.GetPrimaryKey(), map);
},
[](py::tuple t) {
// __setstate__
if (t.size() != 2) {
utility::LogError(
"Cannot unpickle TensorMap! Expecting a tuple of "
"size 2.");
}
return TensorMap(t[0].cast<std::string>(),
t[1].cast<std::unordered_map<std::string,
core::Tensor>>());
}));
tm.def("__setattr__",
[](TensorMap &m, const std::string &key, const core::Tensor &val) {
if (!TensorMap::GetReservedKeys().count(key)) {
m[key] = val;
} else {
throw py::key_error(fmt::format(
"Cannot assign to reserved key \"{}\"", key));
}
});
tm.def("__getattr__",
[](TensorMap &m, const std::string &key) -> core::Tensor {
auto it = m.find(key);
if (it == m.end()) {
throw py::key_error(
fmt::format("Key {} not found in TensorMap", key));
}
return it->second;
});
tm.def("__delattr__", [](TensorMap &m, const std::string &key) {
auto it = m.find(key);
if (it == m.end()) {
throw py::key_error(
fmt::format("Key {} not found in TensorMap", key));
}
return m.Erase(key);
});
tm.def("__str__", &TensorMap::ToString);
tm.def("__repr__", &TensorMap::ToString);
tm.def("__dir__", [](TensorMap &m) {
auto keys = py::list();
for (const auto &kv : m) {
keys.append(kv.first);
}
return keys;
});
}
} // namespace geometry
} // namespace t
} // namespace open3d
|