1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include <string>
#include <unordered_map>
#include "open3d/t/geometry/PointCloud.h"
#include "open3d/t/io/ImageIO.h"
#include "open3d/t/io/PointCloudIO.h"
#include "open3d/t/io/TriangleMeshIO.h"
#include "pybind/docstring.h"
#include "pybind/t/io/io.h"
namespace open3d {
namespace t {
namespace io {
// IO functions have similar arguments, thus the arg docstrings may be shared
static const std::unordered_map<std::string, std::string>
map_shared_argument_docstrings = {
{"filename", "Path to file."},
// Write options
{"compressed",
"Set to ``True`` to write in compressed format."},
{"format",
"The format of the input file. When not specified or set as "
"``auto``, the format is inferred from file extension name."},
{"remove_nan_points",
"If true, all points that include a NaN are removed from "
"the PointCloud."},
{"remove_infinite_points",
"If true, all points that include an infinite value are "
"removed from the PointCloud."},
{"quality", "Quality of the output file."},
{"write_ascii",
"Set to ``True`` to output in ascii format, otherwise binary "
"format will be used."},
{"write_vertex_normals",
"Set to ``False`` to not write any vertex normals, even if "
"present on the mesh."},
{"write_vertex_colors",
"Set to ``False`` to not write any vertex colors, even if "
"present on the mesh."},
{"write_triangle_uvs",
"Set to ``False`` to not write any triangle uvs, even if "
"present on the mesh. For ``obj`` format, mtl file is saved "
"only when ``True`` is set."},
// Entities
{"config", "AzureKinectSensor's config file."},
{"pointcloud", "The ``PointCloud`` object for I/O."},
{"mesh", "The ``TriangleMesh`` object for I/O."},
{"line_set", "The ``LineSet`` object for I/O."},
{"image", "The ``Image`` object for I/O."},
{"voxel_grid", "The ``VoxelGrid`` object for I/O."},
{"trajectory",
"The ``PinholeCameraTrajectory`` object for I/O."},
{"intrinsic", "The ``PinholeCameraIntrinsic`` object for I/O."},
{"parameters",
"The ``PinholeCameraParameters`` object for I/O."},
{"pose_graph", "The ``PoseGraph`` object for I/O."},
{"feature", "The ``Feature`` object for I/O."},
{"print_progress",
"If set to true a progress bar is visualized in the console."},
};
void pybind_class_io_declarations(py::module &m_io) {
py::class_<DepthNoiseSimulator> depth_noise_simulator(
m_io, "DepthNoiseSimulator",
R"(Simulate depth image noise from a given noise distortion model. The distortion model is based on *Teichman et. al. "Unsupervised intrinsic calibration of depth sensors via SLAM" RSS 2009*. Also see <http://redwood-data.org/indoor/dataset.html>__
Example::
import open3d as o3d
# Redwood Indoor LivingRoom1 (Augmented ICL-NUIM)
# http://redwood-data.org/indoor/
data = o3d.data.RedwoodIndoorLivingRoom1()
noise_model_path = data.noise_model_path
im_src_path = data.depth_paths[0]
depth_scale = 1000.0
# Read clean depth image (uint16)
im_src = o3d.t.io.read_image(im_src_path)
# Run noise model simulation
simulator = o3d.t.io.DepthNoiseSimulator(noise_model_path)
im_dst = simulator.simulate(im_src, depth_scale=depth_scale)
# Save noisy depth image (uint16)
o3d.t.io.write_image("noisy_depth.png", im_dst)
)");
}
void pybind_class_io_definitions(py::module &m_io) {
// open3d::t::geometry::Image
m_io.def(
"read_image",
[](const fs::path &filename) {
py::gil_scoped_release release;
geometry::Image image;
ReadImage(filename.string(), image);
return image;
},
"Function to read image from file.", "filename"_a);
docstring::FunctionDocInject(m_io, "read_image",
map_shared_argument_docstrings);
m_io.def(
"write_image",
[](const fs::path &filename, const geometry::Image &image,
int quality) {
py::gil_scoped_release release;
return WriteImage(filename.string(), image, quality);
},
"Function to write Image to file.", "filename"_a, "image"_a,
"quality"_a = kOpen3DImageIODefaultQuality);
docstring::FunctionDocInject(m_io, "write_image",
map_shared_argument_docstrings);
// open3d::t::geometry::PointCloud
m_io.def(
"read_point_cloud",
[](const fs::path &filename, const std::string &format,
bool remove_nan_points, bool remove_infinite_points,
bool print_progress) {
py::gil_scoped_release release;
t::geometry::PointCloud pcd;
ReadPointCloud(filename.string(), pcd,
{format, remove_nan_points,
remove_infinite_points, print_progress});
return pcd;
},
"Function to read PointCloud with tensor attributes from file.",
"filename"_a, "format"_a = "auto", "remove_nan_points"_a = false,
"remove_infinite_points"_a = false, "print_progress"_a = false);
docstring::FunctionDocInject(m_io, "read_point_cloud",
map_shared_argument_docstrings);
m_io.def(
"write_point_cloud",
[](const fs::path &filename,
const t::geometry::PointCloud &pointcloud, bool write_ascii,
bool compressed, bool print_progress) {
py::gil_scoped_release release;
return WritePointCloud(
filename.string(), pointcloud,
{write_ascii, compressed, print_progress});
},
"Function to write PointCloud with tensor attributes to file.",
"filename"_a, "pointcloud"_a, "write_ascii"_a = false,
"compressed"_a = false, "print_progress"_a = false);
docstring::FunctionDocInject(m_io, "write_point_cloud",
map_shared_argument_docstrings);
// open3d::geometry::TriangleMesh
m_io.def(
"read_triangle_mesh",
[](const fs::path &filename, bool enable_post_processing,
bool print_progress) {
py::gil_scoped_release release;
t::geometry::TriangleMesh mesh;
open3d::io::ReadTriangleMeshOptions opt;
opt.enable_post_processing = enable_post_processing;
opt.print_progress = print_progress;
ReadTriangleMesh(filename.string(), mesh, opt);
return mesh;
},
"Function to read TriangleMesh from file", "filename"_a,
"enable_post_processing"_a = false, "print_progress"_a = false,
R"doc(The general entrance for reading a TriangleMesh from a file.
The function calls read functions based on the extension name of filename.
Supported formats are `obj, ply, stl, off, gltf, glb, fbx`.
The following example reads a triangle mesh with the .ply extension::
import open3d as o3d
mesh = o3d.t.io.read_triangle_mesh('mesh.ply')
Args:
filename (str): Path to the mesh file.
enable_post_processing (bool): If True enables post-processing.
Post-processing will
- triangulate meshes with polygonal faces
- remove redundant materials
- pretransform vertices
- generate face normals if needed
For more information see ASSIMPs documentation on the flags
`aiProcessPreset_TargetRealtime_Fast, aiProcess_RemoveRedundantMaterials,
aiProcess_OptimizeMeshes, aiProcess_PreTransformVertices`.
Note that identical vertices will always be joined regardless of whether
post-processing is enabled or not, which changes the number of vertices
in the mesh.
The `ply`-format is not affected by the post-processing.
print_progress (bool): If True print the reading progress to the terminal.
Returns:
Returns the mesh object. On failure an empty mesh is returned.
)doc");
m_io.def(
"write_triangle_mesh",
[](const fs::path &filename, const t::geometry::TriangleMesh &mesh,
bool write_ascii, bool compressed, bool write_vertex_normals,
bool write_vertex_colors, bool write_triangle_uvs,
bool print_progress) {
py::gil_scoped_release release;
return WriteTriangleMesh(filename.string(), mesh, write_ascii,
compressed, write_vertex_normals,
write_vertex_colors,
write_triangle_uvs, print_progress);
},
"Function to write TriangleMesh to file", "filename"_a, "mesh"_a,
"write_ascii"_a = false, "compressed"_a = false,
"write_vertex_normals"_a = true, "write_vertex_colors"_a = true,
"write_triangle_uvs"_a = true, "print_progress"_a = false);
docstring::FunctionDocInject(m_io, "write_triangle_mesh",
map_shared_argument_docstrings);
// DepthNoiseSimulator
auto depth_noise_simulator = static_cast<py::class_<DepthNoiseSimulator>>(
m_io.attr("DepthNoiseSimulator"));
depth_noise_simulator.def(py::init([](const fs::path &fielname) {
return DepthNoiseSimulator(fielname.string());
}),
"noise_model_path"_a);
depth_noise_simulator.def("simulate", &DepthNoiseSimulator::Simulate,
"im_src"_a, "depth_scale"_a = 1000.0f,
"Apply noise model to a depth image.");
depth_noise_simulator.def(
"enable_deterministic_debug_mode",
&DepthNoiseSimulator::EnableDeterministicDebugMode,
"Enable deterministic debug mode. All normally distributed noise "
"will be replaced by 0.");
depth_noise_simulator.def_property_readonly(
"noise_model", &DepthNoiseSimulator::GetNoiseModel,
"The noise model tensor.");
docstring::ClassMethodDocInject(
m_io, "DepthNoiseSimulator", "__init__",
{{"noise_model_path",
"Path to the noise model file. See "
"http://redwood-data.org/indoor/dataset.html for the format. Or, "
"you may use one of our example datasets, e.g., "
"RedwoodIndoorLivingRoom1."}});
docstring::ClassMethodDocInject(
m_io, "DepthNoiseSimulator", "simulate",
{{"im_src",
"Source depth image, must be with dtype UInt16 or Float32, "
"channels==1."},
{"depth_scale",
"Scale factor to the depth image. As a sanity check, if the "
"dtype is Float32, the depth_scale must be 1.0. If the dtype is "
"is UInt16, the depth_scale is typically larger than 1.0, e.g. "
"it can be 1000.0."}});
docstring::ClassMethodDocInject(m_io, "DepthNoiseSimulator",
"enable_deterministic_debug_mode");
}
} // namespace io
} // namespace t
} // namespace open3d
|