File: class_io.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (267 lines) | stat: -rw-r--r-- 12,360 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include <string>
#include <unordered_map>

#include "open3d/t/geometry/PointCloud.h"
#include "open3d/t/io/ImageIO.h"
#include "open3d/t/io/PointCloudIO.h"
#include "open3d/t/io/TriangleMeshIO.h"
#include "pybind/docstring.h"
#include "pybind/t/io/io.h"

namespace open3d {
namespace t {
namespace io {

// IO functions have similar arguments, thus the arg docstrings may be shared
static const std::unordered_map<std::string, std::string>
        map_shared_argument_docstrings = {
                {"filename", "Path to file."},
                // Write options
                {"compressed",
                 "Set to ``True`` to write in compressed format."},
                {"format",
                 "The format of the input file. When not specified or set as "
                 "``auto``, the format is inferred from file extension name."},
                {"remove_nan_points",
                 "If true, all points that include a NaN are removed from "
                 "the PointCloud."},
                {"remove_infinite_points",
                 "If true, all points that include an infinite value are "
                 "removed from the PointCloud."},
                {"quality", "Quality of the output file."},
                {"write_ascii",
                 "Set to ``True`` to output in ascii format, otherwise binary "
                 "format will be used."},
                {"write_vertex_normals",
                 "Set to ``False`` to not write any vertex normals, even if "
                 "present on the mesh."},
                {"write_vertex_colors",
                 "Set to ``False`` to not write any vertex colors, even if "
                 "present on the mesh."},
                {"write_triangle_uvs",
                 "Set to ``False`` to not write any triangle uvs, even if "
                 "present on the mesh. For ``obj`` format, mtl file is saved "
                 "only when ``True`` is set."},
                // Entities
                {"config", "AzureKinectSensor's config file."},
                {"pointcloud", "The ``PointCloud`` object for I/O."},
                {"mesh", "The ``TriangleMesh`` object for I/O."},
                {"line_set", "The ``LineSet`` object for I/O."},
                {"image", "The ``Image`` object for I/O."},
                {"voxel_grid", "The ``VoxelGrid`` object for I/O."},
                {"trajectory",
                 "The ``PinholeCameraTrajectory`` object for I/O."},
                {"intrinsic", "The ``PinholeCameraIntrinsic`` object for I/O."},
                {"parameters",
                 "The ``PinholeCameraParameters`` object for I/O."},
                {"pose_graph", "The ``PoseGraph`` object for I/O."},
                {"feature", "The ``Feature`` object for I/O."},
                {"print_progress",
                 "If set to true a progress bar is visualized in the console."},
};

void pybind_class_io_declarations(py::module &m_io) {
    py::class_<DepthNoiseSimulator> depth_noise_simulator(
            m_io, "DepthNoiseSimulator",
            R"(Simulate depth image noise from a given noise distortion model. The distortion model is based on *Teichman et. al. "Unsupervised intrinsic calibration of depth sensors via SLAM" RSS 2009*. Also see <http://redwood-data.org/indoor/dataset.html>__

Example::

    import open3d as o3d

    # Redwood Indoor LivingRoom1 (Augmented ICL-NUIM)
    # http://redwood-data.org/indoor/
    data = o3d.data.RedwoodIndoorLivingRoom1()
    noise_model_path = data.noise_model_path
    im_src_path = data.depth_paths[0]
    depth_scale = 1000.0

    # Read clean depth image (uint16)
    im_src = o3d.t.io.read_image(im_src_path)

    # Run noise model simulation
    simulator = o3d.t.io.DepthNoiseSimulator(noise_model_path)
    im_dst = simulator.simulate(im_src, depth_scale=depth_scale)

    # Save noisy depth image (uint16)
    o3d.t.io.write_image("noisy_depth.png", im_dst)
            )");
}

void pybind_class_io_definitions(py::module &m_io) {
    // open3d::t::geometry::Image
    m_io.def(
            "read_image",
            [](const fs::path &filename) {
                py::gil_scoped_release release;
                geometry::Image image;
                ReadImage(filename.string(), image);
                return image;
            },
            "Function to read image from file.", "filename"_a);
    docstring::FunctionDocInject(m_io, "read_image",
                                 map_shared_argument_docstrings);

    m_io.def(
            "write_image",
            [](const fs::path &filename, const geometry::Image &image,
               int quality) {
                py::gil_scoped_release release;
                return WriteImage(filename.string(), image, quality);
            },
            "Function to write Image to file.", "filename"_a, "image"_a,
            "quality"_a = kOpen3DImageIODefaultQuality);
    docstring::FunctionDocInject(m_io, "write_image",
                                 map_shared_argument_docstrings);

    // open3d::t::geometry::PointCloud
    m_io.def(
            "read_point_cloud",
            [](const fs::path &filename, const std::string &format,
               bool remove_nan_points, bool remove_infinite_points,
               bool print_progress) {
                py::gil_scoped_release release;
                t::geometry::PointCloud pcd;
                ReadPointCloud(filename.string(), pcd,
                               {format, remove_nan_points,
                                remove_infinite_points, print_progress});
                return pcd;
            },
            "Function to read PointCloud with tensor attributes from file.",
            "filename"_a, "format"_a = "auto", "remove_nan_points"_a = false,
            "remove_infinite_points"_a = false, "print_progress"_a = false);
    docstring::FunctionDocInject(m_io, "read_point_cloud",
                                 map_shared_argument_docstrings);

    m_io.def(
            "write_point_cloud",
            [](const fs::path &filename,
               const t::geometry::PointCloud &pointcloud, bool write_ascii,
               bool compressed, bool print_progress) {
                py::gil_scoped_release release;
                return WritePointCloud(
                        filename.string(), pointcloud,
                        {write_ascii, compressed, print_progress});
            },
            "Function to write PointCloud with tensor attributes to file.",
            "filename"_a, "pointcloud"_a, "write_ascii"_a = false,
            "compressed"_a = false, "print_progress"_a = false);
    docstring::FunctionDocInject(m_io, "write_point_cloud",
                                 map_shared_argument_docstrings);

    // open3d::geometry::TriangleMesh
    m_io.def(
            "read_triangle_mesh",
            [](const fs::path &filename, bool enable_post_processing,
               bool print_progress) {
                py::gil_scoped_release release;
                t::geometry::TriangleMesh mesh;
                open3d::io::ReadTriangleMeshOptions opt;
                opt.enable_post_processing = enable_post_processing;
                opt.print_progress = print_progress;
                ReadTriangleMesh(filename.string(), mesh, opt);
                return mesh;
            },
            "Function to read TriangleMesh from file", "filename"_a,
            "enable_post_processing"_a = false, "print_progress"_a = false,
            R"doc(The general entrance for reading a TriangleMesh from a file.
The function calls read functions based on the extension name of filename.
Supported formats are `obj, ply, stl, off, gltf, glb, fbx`.

The following example reads a triangle mesh with the .ply extension::
    import open3d as o3d
    mesh = o3d.t.io.read_triangle_mesh('mesh.ply')

Args:
    filename (str): Path to the mesh file.
    enable_post_processing (bool): If True enables post-processing.
        Post-processing will
          - triangulate meshes with polygonal faces
          - remove redundant materials
          - pretransform vertices
          - generate face normals if needed

        For more information see ASSIMPs documentation on the flags
        `aiProcessPreset_TargetRealtime_Fast, aiProcess_RemoveRedundantMaterials,
        aiProcess_OptimizeMeshes, aiProcess_PreTransformVertices`.

        Note that identical vertices will always be joined regardless of whether
        post-processing is enabled or not, which changes the number of vertices
        in the mesh.

        The `ply`-format is not affected by the post-processing.

    print_progress (bool): If True print the reading progress to the terminal.

Returns:
    Returns the mesh object. On failure an empty mesh is returned.
)doc");

    m_io.def(
            "write_triangle_mesh",
            [](const fs::path &filename, const t::geometry::TriangleMesh &mesh,
               bool write_ascii, bool compressed, bool write_vertex_normals,
               bool write_vertex_colors, bool write_triangle_uvs,
               bool print_progress) {
                py::gil_scoped_release release;
                return WriteTriangleMesh(filename.string(), mesh, write_ascii,
                                         compressed, write_vertex_normals,
                                         write_vertex_colors,
                                         write_triangle_uvs, print_progress);
            },
            "Function to write TriangleMesh to file", "filename"_a, "mesh"_a,
            "write_ascii"_a = false, "compressed"_a = false,
            "write_vertex_normals"_a = true, "write_vertex_colors"_a = true,
            "write_triangle_uvs"_a = true, "print_progress"_a = false);
    docstring::FunctionDocInject(m_io, "write_triangle_mesh",
                                 map_shared_argument_docstrings);

    // DepthNoiseSimulator
    auto depth_noise_simulator = static_cast<py::class_<DepthNoiseSimulator>>(
            m_io.attr("DepthNoiseSimulator"));
    depth_noise_simulator.def(py::init([](const fs::path &fielname) {
                                  return DepthNoiseSimulator(fielname.string());
                              }),
                              "noise_model_path"_a);
    depth_noise_simulator.def("simulate", &DepthNoiseSimulator::Simulate,
                              "im_src"_a, "depth_scale"_a = 1000.0f,
                              "Apply noise model to a depth image.");
    depth_noise_simulator.def(
            "enable_deterministic_debug_mode",
            &DepthNoiseSimulator::EnableDeterministicDebugMode,
            "Enable deterministic debug mode. All normally distributed noise "
            "will be replaced by 0.");
    depth_noise_simulator.def_property_readonly(
            "noise_model", &DepthNoiseSimulator::GetNoiseModel,
            "The noise model tensor.");
    docstring::ClassMethodDocInject(
            m_io, "DepthNoiseSimulator", "__init__",
            {{"noise_model_path",
              "Path to the noise model file. See "
              "http://redwood-data.org/indoor/dataset.html for the format. Or, "
              "you may use one of our example datasets, e.g., "
              "RedwoodIndoorLivingRoom1."}});
    docstring::ClassMethodDocInject(
            m_io, "DepthNoiseSimulator", "simulate",
            {{"im_src",
              "Source depth image, must be with dtype UInt16 or Float32, "
              "channels==1."},
             {"depth_scale",
              "Scale factor to the depth image. As a sanity check, if the "
              "dtype is Float32, the depth_scale must be 1.0. If the dtype is "
              "is UInt16, the depth_scale is typically larger than 1.0, e.g. "
              "it can be 1000.0."}});
    docstring::ClassMethodDocInject(m_io, "DepthNoiseSimulator",
                                    "enable_deterministic_debug_mode");
}

}  // namespace io
}  // namespace t
}  // namespace open3d