File: slac.cpp

package info (click to toggle)
open3d 0.19.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,496 kB
  • sloc: cpp: 206,543; python: 27,254; ansic: 8,356; javascript: 1,883; sh: 1,527; makefile: 259; xml: 69
file content (273 lines) | stat: -rw-r--r-- 14,461 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// ----------------------------------------------------------------------------
// -                        Open3D: www.open3d.org                            -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------

#include "pybind/t/pipelines/slac/slac.h"

#include "open3d/t/geometry/PointCloud.h"
#include "open3d/t/pipelines/slac/ControlGrid.h"
#include "open3d/t/pipelines/slac/SLACOptimizer.h"
#include "open3d/utility/Logging.h"
#include "pybind/docstring.h"

namespace open3d {
namespace t {
namespace pipelines {
namespace slac {

// SLAC functions have similar arguments, sharing arg docstrings.
static const std::unordered_map<std::string, std::string>
        map_shared_argument_docstrings = {
                {"fnames_processed",
                 "List of filenames (str) for pre-processed pointcloud "
                 "fragments."},
                {"fragment_filenames",
                 "List of filenames (str) for pointcloud fragments."},
                {"fragment_pose_graph", "PoseGraph for pointcloud fragments"},
                {"params",
                 "slac_optimizer_params Parameters to tune in optimization."},
                {"debug_option", "debug options."}};

void pybind_slac_declarations(py::module &m) {
    py::module m_slac = m.def_submodule(
            "slac",
            "Tensor-based Simultaneous Localisation and Calibration pipeline.");
    py::class_<SLACOptimizerParams> slac_optimizer_params(
            m_slac, "slac_optimizer_params",
            "SLAC parameters to tune in optimization.");
    py::class_<SLACDebugOption> slac_debug_option(m_slac, "slac_debug_option",
                                                  "SLAC debug options.");
    py::class_<ControlGrid> control_grid(
            m_slac, "control_grid",
            " ControlGrid is a spatially hashed voxel grid used for non-rigid "
            "point cloud registration and TSDF integration. Each grid stores a "
            "map from the initial grid location to the deformed location. You "
            "can imagine a control grid as a jelly that is warped upon "
            "perturbation with its overall shape preserved. "
            "Reference: "
            "https://github.com/qianyizh/ElasticReconstruction/blob/master/"
            "FragmentOptimizer/OptApp.cpp "
            "http://vladlen.info/papers/elastic-fragments.pdf. ");
}

void pybind_slac_definitions(py::module &m) {
    auto m_slac = static_cast<py::module>(m.attr("slac"));
    auto slac_optimizer_params = static_cast<py::class_<SLACOptimizerParams>>(
            m_slac.attr("slac_optimizer_params"));
    py::detail::bind_copy_functions<SLACOptimizerParams>(slac_optimizer_params);
    slac_optimizer_params
            .def(py::init<const int, const float, const float, const float,
                          const float, const core::Device, const std::string>(),
                 "max_iterations"_a = 5, "voxel_size"_a = 0.05,
                 "distance_threshold"_a = 0.07, "fitness_threshold"_a = 0.3,
                 "regularizer_weight"_a = 1, "device"_a = core::Device("CPU:0"),
                 "slac_folder"_a = "")
            .def_readwrite("max_iterations",
                           &SLACOptimizerParams::max_iterations_,
                           "Number of iterations.")
            .def_readwrite("voxel_size", &SLACOptimizerParams::voxel_size_,
                           "Voxel size to downsample input point cloud.")
            .def_readwrite("distance_threshold",
                           &SLACOptimizerParams::distance_threshold_,
                           " Distance threshold to filter inconsistent "
                           "correspondences.")
            .def_readwrite("fitness_threshold",
                           &SLACOptimizerParams::fitness_threshold_,
                           "Fitness threshold to filter inconsistent pairs.")
            .def_readwrite("regularizer_weight",
                           &SLACOptimizerParams::regularizer_weight_,
                           "Weight of the regularizer.")
            .def_readwrite("device", &SLACOptimizerParams::device_,
                           "Device to use.")
            .def_readwrite("slac_folder", &SLACOptimizerParams::slac_folder_,
                           "Relative directory to store SLAC results in the "
                           "dataset folder.")
            .def(
                    "get_subfolder_name",
                    [](const SLACOptimizerParams &slac_optimizer_params) {
                        return slac_optimizer_params.GetSubfolderName();
                    },
                    "Relative directory to store SLAC results in the dataset "
                    "folder.")
            .def("__repr__", [](const SLACOptimizerParams &params) {
                return fmt::format(
                        "SLACOptimizerParams(max_iterations={:d}, "
                        "voxel_size={:e}, distance_threshold={:e}, "
                        "fitness_threshold={:e}, regularizer_weight={:e}, "
                        "device=open3d.core.Device(\"{}\"), "
                        "slac_folder=\"{}\")",
                        params.max_iterations_, params.voxel_size_,
                        params.distance_threshold_, params.fitness_threshold_,
                        params.regularizer_weight_, params.device_.ToString(),
                        params.slac_folder_);
            });
    auto slac_debug_option = static_cast<py::class_<SLACDebugOption>>(
            m_slac.attr("slac_debug_option"));
    py::detail::bind_copy_functions<SLACDebugOption>(slac_debug_option);
    slac_debug_option
            .def(py::init<const bool, const int>(), "debug"_a = false,
                 "debug_start_node_idx"_a = 0)
            .def(py::init<const int>(), "debug_start_node_idx"_a)
            .def_readwrite("debug", &SLACDebugOption::debug_, "Enable debug.")
            .def_readwrite("debug_start_node_idx",
                           &SLACDebugOption::debug_start_node_idx_,
                           "The node id to start debugging with. Smaller nodes "
                           "will be skipped for visualization.")
            .def("__repr__", [](const SLACDebugOption &debug_option) {
                return fmt::format(
                        "SLACDebugOption(debug={}, "
                        "debug_start_node_idx={:d})",
                        debug_option.debug_ ? "True" : "False",
                        debug_option.debug_start_node_idx_);
            });
    auto control_grid =
            static_cast<py::class_<ControlGrid>>(m_slac.attr("control_grid"));
    py::detail::bind_copy_functions<ControlGrid>(control_grid);
    control_grid.def(py::init<>())
            .def(py::init<float, int64_t, const core::Device>(), "grid_size"_a,
                 "grid_count"_a = 1000, "device"_a = core::Device("CPU:0"))
            .def(py::init<float, core::Tensor, core::Tensor,
                          const core::Device>(),
                 "grid_size"_a, "keys"_a, "values"_a,
                 "device"_a = core::Device("CPU:0"))
            .def(
                    "touch",
                    [](ControlGrid &control_grid, geometry::PointCloud &pcd) {
                        control_grid.Touch(pcd);
                    },
                    "Allocate control grids in the shared camera space.",
                    "pointcloud"_a)
            .def("compactify", &ControlGrid::Compactify,
                 "Force rehashing, so that all entries are remapped to [0, "
                 "size) and form a contiguous index map.")
            .def("get_neighbor_grid_map", &ControlGrid::GetNeighborGridMap,
                 "Get the neighbor indices per grid to construct the "
                 "regularizer. "
                 "Returns a 6-way neighbor grid map for all the active "
                 "entries of shape (N, ). "
                 "\n - buf_indices Active indices in the buffer of shape (N, ) "
                 "\n - buf_indices_nb Neighbor indices (including "
                 "non-allocated "
                 "entries) for the active entries of shape (N, 6). "
                 "\n - masks_nb Corresponding neighbor masks of shape (N, "
                 "6). ")
            .def(
                    "parameterize",
                    [](ControlGrid &control_grid,
                       const geometry::PointCloud &pcd) {
                        return control_grid.Parameterize(pcd);
                    },
                    "Parameterize an input point cloud by embedding each point "
                    "in the grid "
                    "with 8 corners via indexing and interpolation. "
                    "Returns: A PointCloud with parameterization attributes: "
                    "\n- neighbors: Index of 8 neighbor control grid points of "
                    "shape (8, ) in Int64. "
                    "\n- ratios: Interpolation ratios of 8 neighbor control "
                    "grid points of shape (8, ) in Float32.",
                    "pointcloud"_a)
            .def(
                    "deform",
                    [](ControlGrid &control_grid,
                       const geometry::PointCloud &pcd) {
                        return control_grid.Deform(pcd);
                    },
                    "Non-rigidly deform a point cloud using the control grid.",
                    "pointcloud"_a)
            .def(
                    "deform",
                    [](ControlGrid &control_grid, const geometry::Image &depth,
                       const core::Tensor &intrinsics,
                       const core::Tensor &extrinsics, float depth_scale,
                       float depth_max) {
                        return control_grid.Deform(depth, intrinsics,
                                                   extrinsics, depth_scale,
                                                   depth_max);
                    },
                    "Non-rigidly deform a depth image by "
                    "\n- unprojecting the depth image to a point cloud "
                    "\n- deform the point cloud; "
                    "\n- project the deformed point cloud back to the image. ",
                    "depth"_a, "intrinsics"_a, "extrinsics"_a, "depth_scale"_a,
                    "depth_max"_a)
            .def(
                    "deform",
                    [](ControlGrid &control_grid,
                       const geometry::RGBDImage &rgbd,
                       const core::Tensor &intrinsics,
                       const core::Tensor &extrinsics, float depth_scale,
                       float depth_max) {
                        return control_grid.Deform(rgbd, intrinsics, extrinsics,
                                                   depth_scale, depth_max);
                    },
                    "Non-rigidly deform a RGBD image by "
                    "\n- unprojecting the RGBD image to a point cloud "
                    "\n- deform the point cloud; "
                    "\n- project the deformed point cloud back to the image. ",
                    "rgbd"_a, "intrinsics"_a, "extrinsics"_a, "depth_scale"_a,
                    "depth_max"_a)
            .def("get_init_positions", &ControlGrid::GetInitPositions,
                 "Get control grid original positions directly from tensor "
                 "keys.")
            .def("get_curr_positions", &ControlGrid::GetCurrPositions,
                 "Get control grid shifted positions from tensor values "
                 "(optimized in-place)")
            .def(
                    "get_hashmap",
                    [](ControlGrid &control_grid) {
                        return *control_grid.GetHashMap();
                    },
                    "Get the control grid hashmap.")
            .def("size", &ControlGrid::Size)
            .def("get_device", &ControlGrid::GetDevice)
            .def("get_anchor_idx", &ControlGrid::GetAnchorIdx)
            .def("__repr__", [](ControlGrid &control_grid) {
                return fmt::format(
                        "ControlGrid[size={:d}, "
                        "anchor_idx={:d}].",
                        control_grid.Size(), control_grid.GetAnchorIdx());
            });
    m_slac.def(
            "save_correspondences_for_pointclouds",
            &SaveCorrespondencesForPointClouds,
            py::call_guard<py::gil_scoped_release>(),
            "Read pose graph containing loop closures and odometry to compute "
            "correspondences. Uses aggressive pruning -- reject any suspicious "
            "pair.",
            "fnames_processed"_a, "fragment_pose_graph"_a,
            "params"_a = SLACOptimizerParams(),
            "debug_option"_a = SLACDebugOption());
    docstring::FunctionDocInject(m_slac, "save_correspondences_for_pointclouds",
                                 map_shared_argument_docstrings);

    m_slac.def(
            "run_slac_optimizer_for_fragments", &RunSLACOptimizerForFragments,
            "Simultaneous Localization and Calibration: Self-Calibration of "
            "Consumer Depth Cameras, CVPR 2014 Qian-Yi Zhou and Vladlen Koltun "
            "Estimate a shared control grid for all fragments for scene "
            "reconstruction, implemented in "
            "https://github.com/qianyizh/ElasticReconstruction. ",
            "fragment_filenames"_a, "fragment_pose_graph"_a,
            "params"_a = SLACOptimizerParams(),
            "debug_option"_a = SLACDebugOption());
    docstring::FunctionDocInject(m_slac, "run_slac_optimizer_for_fragments",
                                 map_shared_argument_docstrings);

    m_slac.def(
            "run_rigid_optimizer_for_fragments", &RunRigidOptimizerForFragments,
            "Extended ICP to simultaneously align multiple point clouds with "
            "dense pairwise point-to-plane distances.",
            "fragment_filenames"_a, "fragment_pose_graph"_a,
            "params"_a = SLACOptimizerParams(),
            "debug_option"_a = SLACDebugOption());
    docstring::FunctionDocInject(m_slac, "run_rigid_optimizer_for_fragments",
                                 map_shared_argument_docstrings);
}

}  // namespace slac
}  // namespace pipelines
}  // namespace t
}  // namespace open3d