1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/t/pipelines/slam/Frame.h"
#include "open3d/t/pipelines/slam/Model.h"
#include "pybind/docstring.h"
namespace open3d {
namespace t {
namespace pipelines {
namespace slam {
static const std::unordered_map<std::string, std::string>
map_shared_argument_docstrings = {
{"voxel_size", "The voxel size of the volume in meters."},
{"block_resolution",
"Resolution of local dense voxel blocks. By default 16 "
"is used to create 16^3 voxel blocks."},
{"block_count",
"Number of estimate blocks per scene with the block "
"resolution set to 16 and the 6mm voxel resolution. "
"Typically 20000 for small scenes (a desk), 40000 for medium "
"scenes (a bedroom), 80000 for large scenes (an "
"apartment)."},
{"transformation", "A 4x4 3D transformation matrix."},
{"device", "The CPU or CUDA device used for the object."},
{"depth_max",
"The max clipping depth to filter noisy observations too "
"far."},
{"depth_min", "The min clipping depth."},
{"depth_scale",
"The scale factor to convert raw depth into meters."},
{"input_frame",
"The frame that contains raw depth and optionally images with "
"the same size from the input."},
{"model_frame",
"The frame that contains ray casted depth and optionally "
"color from the volumetric model."},
{"estimated_number",
"Estimated number of surface points. Use -1 if no estimation "
"is available."},
{"weight_threshold",
"Weight threshold to filter outlier voxel blocks."},
{"height", "Height of an image frame."},
{"width", "Width of an image frame."},
{"intrinsics", "Intrinsic matrix stored in a 3x3 Tensor."},
{"trunc_voxel_multiplier",
"Truncation distance multiplier in voxel size for signed "
"distance. For instance, "
"--trunc_voxel_multiplier=8 with --voxel_size=0.006(m) "
"creates a truncation distance of 0.048(m)."}};
void pybind_slam_declarations(py::module &m) {
py::module m_slam = m.def_submodule("slam", "Tensor DenseSLAM pipeline.");
py::class_<Model> model(m_slam, "Model",
"Volumetric model for Dense SLAM.");
py::class_<Frame> frame(m_slam, "Frame",
"A frame container that stores a map from keys "
"(color, depth) to tensor images.");
}
void pybind_slam_definitions(py::module &m) {
auto m_slam = static_cast<py::module>(m.attr("slam"));
auto model = static_cast<py::class_<Model>>(m_slam.attr("Model"));
py::detail::bind_copy_functions<Model>(model);
model.def(py::init<>());
model.def(py::init<float, int, int, core::Tensor, core::Device>(),
"Constructor of a VoxelBlockGrid", "voxel_size"_a,
"block_resolution"_a = 16, " block_count"_a = 10000,
"transformation"_a = core::Tensor::Eye(4, core::Float64,
core::Device("CPU:0")),
"device"_a = core::Device("CUDA:0"));
docstring::ClassMethodDocInject(m_slam, "Model", "__init__",
map_shared_argument_docstrings);
model.def("get_current_frame_pose", &Model::GetCurrentFramePose);
model.def("update_frame_pose", &Model::UpdateFramePose);
model.def("synthesize_model_frame", &Model::SynthesizeModelFrame,
py::call_guard<py::gil_scoped_release>(),
"Synthesize frame from the volumetric model using ray casting.",
"model_frame"_a, "depth_scale"_a = 1000.0, "depth_min"_a = 0.1,
"depth_max"_a = 3.0, "trunc_voxel_multiplier"_a = 8.0,
"enable_color"_a = false, "weight_threshold"_a = -1.0);
docstring::ClassMethodDocInject(m_slam, "Model", "synthesize_model_frame",
map_shared_argument_docstrings);
model.def(
"track_frame_to_model", &Model::TrackFrameToModel,
py::call_guard<py::gil_scoped_release>(),
"Track input frame against raycasted frame from model.",
"input_frame"_a, "model_frame"_a, "depth_scale"_a = 1000.0,
"depth_max"_a = 3.0, "depth_diff"_a = 0.07,
py::arg_v("method", odometry::Method::PointToPlane,
"Method.PointToPlane"),
"criteria"_a = (std::vector<odometry::OdometryConvergenceCriteria>){
6, 3, 1});
docstring::ClassMethodDocInject(m_slam, "Model", "track_frame_to_model",
map_shared_argument_docstrings);
model.def("integrate", &Model::Integrate,
py::call_guard<py::gil_scoped_release>(),
"Integrate an input frame to a volume.", "input_frame"_a,
"depth_scale"_a = 1000.0, "depth_max"_a = 3.0,
"trunc_voxel_multiplier"_a = 8.0);
docstring::ClassMethodDocInject(m_slam, "Model", "integrate",
map_shared_argument_docstrings);
model.def("extract_pointcloud", &Model::ExtractPointCloud,
py::call_guard<py::gil_scoped_release>(),
"Extract point cloud from the volumetric model.",
"weight_threshold"_a = 3.0, "estimated_number"_a = -1);
docstring::ClassMethodDocInject(m_slam, "Model", "extract_pointcloud",
map_shared_argument_docstrings);
model.def("extract_trianglemesh", &Model::ExtractTriangleMesh,
py::call_guard<py::gil_scoped_release>(),
"Extract triangle mesh from the volumetric model.",
"weight_threshold"_a = 3.0, "estimated_number"_a = -1);
docstring::ClassMethodDocInject(m_slam, "Model", "extract_trianglemesh",
map_shared_argument_docstrings);
model.def(
"get_hashmap", &Model::GetHashMap,
"Get the underlying hash map from 3D coordinates to voxel blocks.");
model.def_readwrite("voxel_grid", &Model::voxel_grid_,
"Get the maintained VoxelBlockGrid.");
model.def_readwrite("frustum_block_coords", &Model::frustum_block_coords_,
"Active block coordinates from prior integration");
model.def_readwrite("transformation_frame_to_world",
&Model::T_frame_to_world_,
"Get the 4x4 transformation matrix from the current "
"frame to the world frame.");
model.def_readwrite("frame_id", &Model::frame_id_,
"Get the current frame index in a sequence.");
auto frame = static_cast<py::class_<Frame>>(m_slam.attr("Frame"));
py::detail::bind_copy_functions<Frame>(frame);
frame.def(py::init<int, int, core::Tensor, core::Device>(), "height"_a,
"width"_a, "intrinsics"_a, "device"_a);
docstring::ClassMethodDocInject(m_slam, "Frame", "__init__",
map_shared_argument_docstrings);
frame.def("height", &Frame::GetHeight);
frame.def("width", &Frame::GetWidth);
frame.def("set_data", &Frame::SetData,
"Set a 2D tensor to a image to the given key in the map.");
frame.def("get_data", &Frame::GetData,
"Get a 2D tensor from a image from the given key in the map.");
frame.def("set_data_from_image", &Frame::SetDataFromImage,
"Set a 2D image to the given key in the map.");
frame.def("get_data_as_image", &Frame::GetDataAsImage,
"Get a 2D image from from the given key in the map.");
}
} // namespace slam
} // namespace pipelines
} // namespace t
} // namespace open3d
|