1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// ----------------------------------------------------------------------------
// - Open3D: www.open3d.org -
// ----------------------------------------------------------------------------
// Copyright (c) 2018-2024 www.open3d.org
// SPDX-License-Identifier: MIT
// ----------------------------------------------------------------------------
#include "open3d/pipelines/integration/UniformTSDFVolume.h"
#include <sstream>
#include "open3d/camera/PinholeCameraIntrinsic.h"
#include "open3d/data/Dataset.h"
#include "open3d/geometry/RGBDImage.h"
#include "open3d/io/ImageIO.h"
#include "open3d/utility/FileSystem.h"
#include "open3d/visualization/utility/DrawGeometry.h"
#include "tests/Tests.h"
namespace open3d {
namespace tests {
bool ReadPoses(const std::string& trajectory_path,
std::vector<Eigen::Matrix4d>& poses) {
FILE* f = utility::filesystem::FOpen(trajectory_path, "r");
if (f == NULL) {
utility::LogWarning("Read poses failed: unable to open file: {}",
trajectory_path);
return false;
}
char line_buffer[DEFAULT_IO_BUFFER_SIZE];
Eigen::Matrix4d pose;
auto read_pose = [&pose, &line_buffer, f]() -> bool {
// Read meta line
if (!fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f)) {
return false;
}
// Read 4x4 matrix
for (size_t row = 0; row < 4; ++row) {
if (!fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f)) {
return false;
}
if (sscanf(line_buffer, "%lf %lf %lf %lf", &pose(row, 0),
&pose(row, 1), &pose(row, 2), &pose(row, 3)) != 4) {
return false;
}
}
return true;
};
while (read_pose()) {
// Copy to poses
poses.push_back(pose);
}
fclose(f);
return true;
}
TEST(UniformTSDFVolume, Constructor) {
double length = 4.0;
int resolution = 128;
double sdf_trunc = 0.04;
auto color_type = pipelines::integration::TSDFVolumeColorType::RGB8;
pipelines::integration::UniformTSDFVolume tsdf_volume(
length, resolution, sdf_trunc,
pipelines::integration::TSDFVolumeColorType::RGB8);
// TSDFVolume base class attributes
EXPECT_EQ(tsdf_volume.voxel_length_, length / resolution);
EXPECT_EQ(tsdf_volume.sdf_trunc_, sdf_trunc);
EXPECT_EQ(tsdf_volume.color_type_, color_type);
// UniformTSDFVolume attributes
ExpectEQ(tsdf_volume.origin_, Eigen::Vector3d(0, 0, 0));
EXPECT_EQ(tsdf_volume.length_, length);
EXPECT_EQ(tsdf_volume.resolution_, resolution);
EXPECT_EQ(tsdf_volume.voxel_num_, resolution * resolution * resolution);
EXPECT_EQ(int(tsdf_volume.voxels_.size()), tsdf_volume.voxel_num_);
}
TEST(UniformTSDFVolume, RealData) {
// Poses
data::SampleRedwoodRGBDImages redwood_data;
std::string trajectory_path = redwood_data.GetOdometryLogPath();
std::vector<Eigen::Matrix4d> poses;
if (!ReadPoses(trajectory_path, poses)) {
throw std::runtime_error("Cannot read trajectory file");
}
// Extrinsics
std::vector<Eigen::Matrix4d> extrinsics;
for (const auto& pose : poses) {
extrinsics.push_back(pose.inverse());
}
// Intrinsics
camera::PinholeCameraIntrinsic intrinsic(
camera::PinholeCameraIntrinsicParameters::PrimeSenseDefault);
// TSDF init
pipelines::integration::UniformTSDFVolume tsdf_volume(
4.0, 100, 0.04, pipelines::integration::TSDFVolumeColorType::RGB8);
// Integrate RGBD frames
for (size_t i = 0; i < poses.size(); ++i) {
// Color
geometry::Image im_color;
io::ReadImage(redwood_data.GetColorPaths()[i], im_color);
// Depth
geometry::Image im_depth;
io::ReadImage(redwood_data.GetDepthPaths()[i], im_depth);
// Integrate
std::shared_ptr<geometry::RGBDImage> im_rgbd =
geometry::RGBDImage::CreateFromColorAndDepth(
im_color, im_depth, /*depth_scale*/ 1000.0,
/*depth_func*/ 4.0, /*convert_rgb_to_intensity*/ false);
tsdf_volume.Integrate(*im_rgbd, intrinsic, extrinsics[i]);
}
// These hard-coded values are for unit test only. They are used to make
// sure that after code refactoring, the numerical values still stay the
// same. However, using different parameters or algorithmtic improvements
// could invalidate these reference values. We use a custom threshold 0.1
// to account for acccumulative floating point errors.
// Extract mesh
std::shared_ptr<geometry::TriangleMesh> mesh =
tsdf_volume.ExtractTriangleMesh();
EXPECT_EQ(mesh->vertices_.size(), 3198u);
EXPECT_EQ(mesh->triangles_.size(), 4402u);
Eigen::Vector3d color_sum(0, 0, 0);
for (const Eigen::Vector3d& color : mesh->vertex_colors_) {
color_sum += color;
}
ExpectEQ(color_sum, Eigen::Vector3d(2703.841944, 2561.480949, 2481.503805),
/*threshold*/ 0.1);
// Uncomment to visualize
// visualization::DrawGeometries({mesh});
// Extract point cloud
std::shared_ptr<geometry::PointCloud> pcd = tsdf_volume.ExtractPointCloud();
EXPECT_EQ(pcd->points_.size(), 2227u);
EXPECT_EQ(pcd->colors_.size(), 2227u);
color_sum << 0, 0, 0;
for (const Eigen::Vector3d& color : pcd->colors_) {
color_sum += color;
}
ExpectEQ(color_sum, Eigen::Vector3d(1877.673116, 1862.126057, 1862.190616),
/*threshold*/ 0.1);
Eigen::Vector3d normal_sum(0, 0, 0);
for (const Eigen::Vector3d& normal : pcd->normals_) {
normal_sum += normal;
}
ExpectEQ(normal_sum, Eigen::Vector3d(-161.569098, -95.969433, -1783.167177),
/*threshold*/ 0.1);
// Extract voxel cloud
std::shared_ptr<geometry::PointCloud> voxel_pcd =
tsdf_volume.ExtractVoxelPointCloud();
EXPECT_EQ(voxel_pcd->points_.size(), 4488u);
EXPECT_EQ(voxel_pcd->colors_.size(), 4488u);
color_sum << 0, 0, 0;
for (const Eigen::Vector3d& color : voxel_pcd->colors_) {
color_sum += color;
}
ExpectEQ(color_sum, Eigen::Vector3d(2096.428416, 2096.428416, 2096.428416),
/*threshold*/ 0.1);
}
} // namespace tests
} // namespace open3d
|